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Abstract-A multiuser detection scheme based on the generalized 
approach to signal processing in noise is proposed. It is shown 
that under this scheme, the generalized receiver can be designed 
blindly, i.e., it can be estimated from the received signal with the 
prior knowledge of only the signature waveform and timing of 
the user of interest. A blind adaptive implementation based on a 
signal subspace-tracking algorithm is also developed. It is seen 
that compared with the minimum-output-energy blind adaptive 
multiuser detector, the proposed subspace-based blind adaptive 
generalized receiver offers better performance but higher comp-
utational complexity. 

 

I. INTRODUCTION 

Direct-sequence spread-spectrum code-division multiple 
access (DS-SS/CDMA) modulation techniques are considered 
as a popular multi-access technology for personal, cellular, 
and satellite communication services [1], [2]. The capacity of 
CDMA wireless communication systems can be substantially 
increased under implementation of multiuser detection techni-
que. At the present time, a large amount of research has add-
ressed various multiuser detection schemes [3]. Adaptive mu-
ltiuser detection has been paid a considerable recent attention 
[4]. Thus, the methods for adapting the decorrelating, or zero-
forcing, linear detector requiring the transmission of training 
sequences during adaptation have been proposed in [5]-[7]. 
The minimum-mean-square-error (MMSE) detector, the alter-
native detector, can be adapted either through the use of trai-
ning sequences [8]-[11], or in the blind mode, i.e., with the 
prior knowledge of only the signature waveform and timing 
of the user of interest [12], [13]. Blind adaptation schemes are 
especially attractive for the downlinks of CDMA systems, si-
nce in a dynamic environment, it is very difficult for a mobile 
user to obtain accurate information on other active users in 
the channel, such as their signature waveforms; and the frequ-
ent use of training sequence is certainly a waste of channel 
bandwidth. 

In this paper, we propose a blind multiuser generalized rec-
eiver (GR) constructed according to the generalized approach 
to signal processing in noise [14]-[18], which is based on sig-
nal subspace estimation. Subspace-based high-resolution me-
thods play an important role in sensor array processing, spec-
trum analysis, and general parameter estimation [19]. Several 
recent works have addressed the use of sub-spaced-based me-

thods for delay estimation [20], [21] and channel estimation 
[20], [22] in CDMA systems. 

The contribution of this paper is the following. First of all, 
we show that based on signal subspace estimation, GR can be 
obtained blindly, i.e., it can be estimated from the received si-
gnal with the prior knowledge of only the signature wave-
form and timing of the user of interest. The consistency and 
the asymptotic variance of the estimations of GR are examin-
ed. A blind adaptive implementation based on a signal sub-
space tracking algorithm is also developed. It is seen the com-
pared, for example, with minimum-output-energy (MOE) 
blind adaptive detector [12], the blind adaptive GR offers bet-
ter performance in terms of the steady-state signal-to-interfe-
rence-noise ratio (SINR). 
 

II. SIGNAL MODEL 

Consider a baseband digital direct sequence (DS) CDMA 
network of K users. The received signal can be modeled as 
 
                                 )()()( tntatx +=  ,                                (1) 

 
where )(tn is the additive white Gaussian noise (AWGN) with 
zero mean and variance 2

nσ , and )(ta is the superposition of 
the data signals of the K users, given by 
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where 2M+1is the number of data symbols per user per frame 
T is the symbol interval; kS denotes the received amplitude; 

kτ is the delay; )}({ ibk is the symbol stream and ,,1,0 ±=i  
M± ; )}({ tαk is the normalized signaling waveform of the k-

th user and Tt ≤≤0 . We assume that )(tαk are supported 
only within the limits of the interval ],0[ T and have unit ener-
gy, and that )}({ ibk is a collection of independent equiproba-
ble 1± random variables. For the direct-sequence spread-spe-
ctrum (DS-SS) multiple-access format, the user signaling wa-
ve-forms are of the form 
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where N is the processing gain; )( 110 ,,, k

N
kk βββ − is a signa-

ture sequence of 1± ’s assigned to the k-th user; and )(tψ is a 
normalized chip waveform of duration cT , where 
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                                        TNTc =  .                                     (4) 
   In this paper, we restrict our attention to the synchronous 
case of model given by (2), in which 
 
                              021 ==== Kτττ   .                          (5) 

 
It is then sufficient to consider the received signal during one 
symbol interval, and the received signal model becomes 
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One simple suboptimal way to treat the asynchronous system 
is the “one-shot” approach, in which a particular transmitted 
data bit is estimated based on only the received signal within 
the symbol interval corresponding to that data bit. An asynch-
ronous system of K users can then be viewed as equivalent to 
a synchronous system with 12 −K users [9], and the results of 
this paper thus apply in this context as well. Alternatively, an 
asynchronous CDMA system is a special case of the more ge-
neral dispersive CDMA system in which the channel introdu-
ces the intersymbol interference (ISI), in addition to the mul-
tiple-access interference (MAI). The subspace-based techniq-
ues considered in this paper can also be extended to such a di-
spersive CDMA system for blind joint suppression of both 
MAI and ISI [23]. 
   Consider the synchronous model given by (6). At the recei-
ver, chip-matched filtering followed by chip rate sampling yi-
elds an N-vector of chip-matched filter output samples within 
a symbol interval T  
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where 
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is the normalized signature waveform vector of the k-th user, 
and n is the AWGN vector with 0 mean and covariance mat-
rix 
                                       Nnn σ IK 2=   ,                                (9) 
 
where NI is the NN × identity matrix. Thus, we can restrict 
attention to the discrete-time model given by (7). 

 

III. SUBSPACE-BASED BLIND LINEAR MULTIUSER GR 

A. Subspace Concept 

   For convenience and without loss of generality, we assu-
me that the signature waveforms K

kk 1}{ =α of the K users are 
linearly independent. Denote 
 
                               ][ 21 KαααΑ =                                (10) 

 
and 
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The autocorrelation matrix of the received signal x takes the 
following form 
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where }{⋅E is the mathematical expectation and subscript T 
denotes the transposed matrix. By performing an eigendeco-
mposition of the matrix Q , we get 
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where 
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                              )( ,, diag 1 Kα ww =W                       (16) 
 

contains the K largest eigenvalues of Q in descending order 
and 
 
                                    ][ 1 Kα vvV =   ,                         (17) 

 
contains the corresponding orthonormal eigenvectors; 
 
                                       KNnn σ −= IW 2                              (18) 

 
and 
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contains the KN − orthonormal eigenvectors that correspond 
to the eigenvalue 2

nσ . 
    It is easy to see that 
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The range space of αV is called the signal subspace and its 
orthogonal complement, the noise subspace, is spanned by 

nV . Define the NN × diagonal matrix 
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From (12) and (13) we obtain 
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    The linear multiuser GR for demodulating the k-th user’s 
data bit in (7) is in the following form 
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followed by a hard limiter, where N

k L∈Z . Next, we derive  
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expressions for the GR in terms of the signal subspace param- 
eters  ,,( αα WV and )2

nσ . 
 

B. Generalized Receiver (GR) 

    For better understanding (23), there is a need to recall 
the main statements of the generalized approach to signal pro-
cessing in noise [14]–[18], based on which the GR is constru-
cted. 

There are two linear systems at the GR front end that can 
be presented as bandpass filters, namely, the preliminary filter 
(PF) with the impulse response )(τhPF  and the additional fil-
ter (AF) with the impulse response )(τhAF . For simplicity of 
analysis, we consider that these filters have the same amplitu-
de-frequency responses and equal bandwidths. Moreover, a 
resonant frequency of the AF is detuned relative to a resonant 
frequency of PF on such a value that signal cannot pass thro-
ugh the AF. 

Thus, the signal and noise can be appeared at the PF output 
and the only noise is appeared at the AF output. It is well 
known fact that if a value of detuning between the AF and PF 
resonant frequencies is more then af∆÷54 , where af∆  is the 
signal bandwidth, the processes forming at the AF and PF ou-
tputs can be considered as independent and uncorrelated pro-
cesses (in practice, the coefficient of correlation is not more 
than 0.05), but, in the case of signal absence in the input pro-
cess the statistical parameters at the AF and PF outputs will 
be the same, because the same noise is coming in at the AF 
and PF inputs and we may think that the AF and PF do not 
change the statistical parameters of input process, since they 
are the linear GR front end systems. By this reason, the AF 
can be considered as a generator of reference sample with a 
priori information a “no” signal is obtained in the additional 
reference noise forming at the AF output.  

There is a need to make some comments regarding the noi-
se forming at the PF and AF outputs. If the Gaussian noise gi-
ven by (1) comes in at the AF and PF inputs (the GR linear 
system front end), the noise forming at the AF and PF outputs 
is Gaussian, too, because AF and PF are the linear systems 
and, in a general case, takes the following form: 
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and 
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If, for example, AWGN with zero mean and two-sided po-

wer spectral density 05.0 N  is coming in at the AF and PF in-
puts (the GR linear system front end), then the noise forming 
at the AF and PF outputs is Gaussian with zero mean and va-
riance given by [15, pp.264–269] 
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where, in the case if the AF (or PF) is the RLC oscillatory cir-
cuit, then the AF (or PF) bandwidth F∆  and resonance freq-
uency 0ω  are defined in the following manner  
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where 
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    The correlation matrix of the signature waveforms is defi-
ned as 
 
                                      AAR T=   .                                  (29) 
 
Since 
 
                                   K=)(rank A   ,                                (30) 
 
it follows that R is invertible. 
    Henceforth, let the user 1 be the user of interest. The GR 
(23) is designed to eliminate the MAI caused by other users, 
at the expense of enhancing the ambient noise. Assume that 
the weight vector 11 gZ = given by 
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where

k1
1][ −R denotes the ),( ji -th element of the matrix 

1−R .  
    The weight vector in (31) is characterized by the following 
statements: 
    1) The vector 1g in (31) is the unique signal 
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such that 
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It is obvious, since 
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the vector g that satisfies the above conditions exists and is 
unique. It is seen from (31) that 
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Therefore, gg =1 . 
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    2) The vector 1g in (31) is the unique signal given by (32) 
that minimizes 
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it then follows that for 
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)(gf is minimized if and only if (33) is satisfied. According 

to (36) we obtain (38) again. 
    3) The vector 1g in (31) is given in terms of the signal sub-
space parameters in the following form: 
 
 
                

1
14

1

1
14

1 )(
)(

4
4

αVIWVα
αVIWV

g
T
αKnαα

T

T
αKnαα

σ
σ

−

−

−

−
=   .               (40) 

 
 
The proof is not difficult. 
    The canonical form of the linear minimum mean-square-er-
ror (MMSE) multiuser GR of user 1 has the form of (23) with 
the weight vector 11 mZ = , where NL∈1m minimizes the 
MSE defined as 
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subject to 
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For the linear MMSE GR 1m is given in terms of the signal 
subspace parameters by 
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    Since (23) is invariant to positive scaling, the two linear 
multiuser GRs given by (40) and (43) can be interpreted as 
follows. First, the received signal x is projected onto the sig-
nal subspace to get a K-vector 
 

                                       xVq T
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which clearly is a sufficient statistic for demodulating the K 
user’s data bits. The signature waveform 1α of the user of in-
terest is also projected onto the signal subspace to obtain 
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The projection of the linear multiuser GR in the signal sub-
space is then a signal KL∈1H such that the data bit is demo-
dulated as 
 
                                 )( 11 sgn ˆ qHTb =   .                              (46) 
 
    According to (40) and (43), the projections of the multiuser 
GR and linear MMSE GR in the signal subspace are given, 
respectively, by 
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Therefore, the projection of the linear multiuser GRs in the si-
gnal subspace are obtained by projecting the signature wave-
form of the user of interest onto the signal subspace, followed 
by scaling the k-th component of this projection by a factor of 

)4/(1 4
nk σw − or kw/1 . Note that as 02 →nσ , the two linear 

GRs become identical. 
    Since the autocorrelation matrix Q , and therefore its eigen-
components can be estimated from the received signal, from 
the preceding discussion, we see that both the first GR and 
the linear MMSE GR can be estimated from the received sig-
nal with a priori knowledge of only the signature waveform 
and timing of the user of interest, i.e., they both can be obtai-
ned blindly. 
 

IV. SIMULATION EXAMPLE 

It is seen from the previous section that the linear multiuser 
GRs are obtained as long as the signal subspace components 
are identified. Modern subspace tracking algorithms are recu-
rsive in nature and update the subspace in a sample-by-samp-
le fashion. In this paper, we adopt the recently proposed pro-
jection approximation subspace-tracking algorithm [24] for 
blind adaptive multiuser detection application. The advantag-
es of this algorithm include almost sure global convergence to 
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the signal eigenvectors and eigenvalues, low computational 
complexity, and the rank tracking capability. 

We provide a simulation example to illustrate the perform-
ance of the subspace-based blind adaptive linear MMSE GR. 
This example compares the performance of the subspace-ba-
sed blind adaptive linear MMSE GR with the performance of 
the minimum-output-energy (MOE) blind adaptive detector 
proposed in [12]. It assumes a synchronous CDMA system 
with processing gain 31=N and six users )6( =K . The desi-
red user is user 1. There are four 10-dB MAIs and one 20-dB 
MAI, i.e., 10/ 2

1
2 =SSk , for 5,,2 =k  and 100/ 2

1
2 =SSk , 

for 6=k . 
The performance measure is the output SINR, defined as 
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where the expectation is with respect to the data bits of MAIs 
and the noise. In the simulation, the expectation operation is 
replaced by the time averaging operation. For the projection 
approximation subspace with deflation subspace tracking al-
gorithm, we found that with a random initialization, the con-
vergence is slow. Therefore, in the simulations, the initial es-
timations of the eigencomponents of the signal subspace are 
obtained by applying singular value decomposition to the first 
50 data vectors. The projection approximation subspace with 
deflation subspace tracking algorithm is then employed for 
tracking the signal subspace. The time-averaged output SINR 
versus number of iterations is shown in Fig.1. 
    As a comparison, the simulated performance of the recursi-
ve least squared (RLS) version of the MOE blind adaptive de-
tector is also shown in Fig. 1. It has been shown in [13] that 
the steady-state SINR of this algorithm is given by 
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where ∗SINR is the optimal SINR value, and 
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and 10 << β is the forgetting factor. Hence, the performance 
of this algorithm is upper bounded by d/1 when 
 
                                    ∗<< SINR1

d
  ,                                (52) 

 
as is seen in Fig. 1. 
    Although an analytical expression for the steady-state 
SINR of the subspace-based blind adaptive GR is very diffi-
cult to obtain, as the dynamics of the projection approximati-
on subspace with deflation subspace tracking algorithm are 
complicated, it is seen from Fig. 1 that with the same forget-
ting factor β , the blind adaptive GR well outperforms the 
RLS MOE detector. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.1. Performance comparison between the space-based blind linear MMSE 
GR and RLS MOE detector 
 
 

V. CONCLUSIONS 

    In this paper, we have developed the blind adaptive multiu-
ser GR based on signal subspace estimation. Compared with 
the previous minimum-output-energy blind adaptive multius-
er detection algorithm, it is seen that the proposed GR has be-
tter performance. We note from simulation example that the 
projection approximation subspace with deflation subspace 
tracking algorithm has a relatively slow convergence rate, 
which may pose a problem for a time-varying system. Never-
theless, subspace tracking is a very active research field in si-
gnal processing for wireless communications and it is antici-
pated that with the emergence of more powerful fast subspace 
trackers, for example [25], the performance of the subspace-
based adaptive multiuser detectors will be improved. 
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