Radar Sensor Technology XV

Kenneth I. Ranney
Armin W. Doerry
Editors

25–27 April 2011
Orlando, Florida, United States

Volume 8021
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

Published by:
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) - Fax +1 360 671 1445
SPIE.org

Copyright © 2011, Society of Photo-Optical Instrumentation Engineers

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $15.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/11/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, ..., 0Z, followed by 10-12, 20-22, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID number.
Contents

ix Conference Committee

SESSION 1 SYSTEMS AND APPLICATIONS

8021 02 Ground penetration radar using free-electron maser [8021-01]
A. D. McAulay, Lehigh Univ. (United States)

8021 03 A computer simulation of a long-range CWFM radar showing the tradeoffs of performance as a function of range [8021-02]
R. S. Gordy, S. Zolezziowski, Global Technical Systems (United States)

8021 04 Augmented reality using ultra-wideband radar imagery [8021-03]
L. Nguyen, F. Koenig, K. Sherbondy, U.S. Army Research Lab. (United States)

SESSION 2 PHENOMENOLOGY I

8021 06 Human polarimetric micro-doppler [8021-10]
D. Tahmoush, J. Silvius, U.S. Army Research Lab. (United States)

8021 08 Polarization dynamics and interference analysis for wideband signals [8021-07]
G. Stratios, G. Maalouli, D. Manzi, R. Ihly, Raytheon Missile Systems (United States)

8021 09 Phenomenology of fully polarimetric imaging radars [8021-08]
J. V. Geaga, Consultant (United States)

8021 0A Visualizing and displaying radar micro-doppler data [8021-11]
D. Tahmoush, J. Silvius, U.S. Army Research Lab. (United States)

SESSION 3 PHENOMENOLOGY II

8021 0C Polarisation transform analysis for detection of shallow buried non-metallic landmines in microwave X-band region [8021-09]
K. C. Tiwari, D. Singh, M. Arora, Indian Institute of Technology Roorkee (India)

8021 0D Radar cross section statistics of dismounts at Ku-band [8021-12]
A. M. Raynal, B. L. Burns, Sandia National Labs. (United States); T. J. Verge, General Atomics Aeronautical Systems, Inc. (United States); D. L. Bickel, Sandia National Labs. (United States); R. Dunkel, General Atomics Aeronautical Systems, Inc. (United States); A. W. Doerry, Sandia National Labs. (United States)

8021 0E Radar cross section statistics of ground vehicles at Ku-band [8021-13]
A. M. Raynal, D. L. Bickel, M. M. Denton, W. J. Bow, A. W. Doerry, Sandia National Labs. (United States)
8021 OF Human activity classification using Hilbert-Huang transform analysis of radar Doppler data [8021-14]
D. P. Fairchild, R. M. Narayanan, The Pennsylvania State Univ. (United States)

8021 0H Comparison of three radar systems for through-the-wall sensing [8021-16]
X. Wang, J. Li, The Univ. of Texas-Pan American (United States); Y. Yang, C. Lu, Towson Univ. (United States); C. Kwan, B. Ayhan, Signal Processing, Inc. (United States)

8021 0I A fast data acquisition and processing scheme for through-the-wall radar imaging [8021-17]
F. Soldovieri, Institute for Electromagnetic Sensing of the Environment (Italy); R. Sollimene, Seconda Univ. di Napoli (Italy); F. Ahmad, Villanova Univ. (United States)

8021 0J Target localization with a single-antenna monostatic radar via multipath exploitation [8021-18]
P. Setlur, G. E. Smith, F. Ahmad, M. G. Amin, Villanova Univ. (United States)

8021 0K Real-time subsurface imaging algorithm for intra-wall characterization [8021-19]
W. Zhang, A. Haorfar, C. Thajudeen, Villanova Univ. (United States)

8021 OM Wave propagation through complex wall structures [8021-21]
B. Anderton, R. White, E. Williams, J. Hess, S. Manson, G. Stratis, Raytheon Missile Systems (United States)

8021 0N Novel antennas based upon extraordinary transmission metamaterial lenses [8021-22]
M. Navarro-Cia, M. Beruete, F. Falcone, M. Sorolla, Univ. Publica de Navarra (Spain)

8021 0O Transformation optics compressed rotman lens implemented with complementary metamaterials [8021-23]
J. Hunt, Duke Univ. (United States); N. Kundtz, Duke Univ. (United States) and Intellectual Ventures (United States); B. Sun, D. R. Smith, Duke Univ. (United States)

8021 0R Metamaterial-driven lens optics for new beam forming patterns [8021-26]
A. I. Zaghoul, U.S. Army Research Lab. (United States) and Virginia Polytechnic Institute and State Univ. (United States); S. J. Weiss, U.S. Army Research Lab. (United States)

8021 OS Super-resolution technologies for all-weather sense and avoidance (SAA) radar [8021-27]
Y. R. Zhang, Z. Li, S. Wang, Y. Pan, H. Suarez, The Univ. of Oklahoma (United States)

8021 OU SAR vibrometry using the pseudo-subspace approach based on the discrete fractional Fourier transform [8021-29]
Q. Wang, B. Santhanam, M. Pepin, The Univ. of New Mexico (United States); T. Atwood, Sandia National Labs. (United States); M. M. Hayat, The Univ. of New Mexico (United States)
SESSION 7 APPLICATIONS AND TECHNIQUES II

8021 0W **PAFD RF localization criteria for multimodal scattering environments** [8021-31]
M. Gates, C. Barber, R. Selmick, Louisiana Tech Univ. (United States); H. Al-Issa, R. Ordonez, Univ. of Dayton (United States); A. Mitra, Air Force Research Lab. (United States)

8021 0Y **Clutter locus equation for more general linear array orientation** [8021-33]
D. L. Bickel, Sandia National Labs. (United States)

8021 11 **Quick signal detection and dynamic resource allocation scheme for ultra-wideband radar** [8021-36]
X. Kong, A. Mohin, HRL Labs., LLC (United States)

8021 12 **Adaptive detection of range-spread targets by the generalized detector** [8021-38]
V. Tuzukov, Kyungpook National Univ. (Korea, Republic of)

SESSION 8 SIGNAL PROCESSING IN NOISE RADAR

8021 13 **Radar signature acquisition using an indigenously designed noise radar system** [8021-39]
A. P. Freundorfer, Queen’s Univ. (Canada); J. Y. Siddiqui, Y. M. M. Antar, Royal Military College of Canada (Canada); T. Thayaparan, Defence Research and Development Canada (Canada)

8021 14 **High-resolution noise radar using slow ADC** [8021-40]
K. Lukin, P. Vyplavin, O. Zemlyanyi, S. Lukin, V. Palamarchuk, Institute of Radiophysics and Electronics (Ukraine)

8021 15 **Direct digitization of ultra-wideband (UWB) noise signals using frequency band folding** [8021-41]
R. Vela, The Pennsylvania State Univ. (United States); G. Woodington, M. R. Deluca, Raytheon Co. (United States); R. M. Narayanan, The Pennsylvania State Univ. (United States)

8021 16 **Cross-correlation analysis of noise radar signals propagating through lossy dispersive media** [8021-42]
S. Smlth, R. M. Narayanan, The Pennsylvania State Univ. (United States)

8021 17 **Super-resolution techniques for velocity estimation using UWB random noise radar signals** [8021-43]
M. Dawood, N. Quraishi, New Mexico State Univ. (United States); A. V. Alejos, New Mexico State Univ. (United States) and Univ. of Vigo (Spain)
SESSION 9 ADAPTIVE GENERATION OF NOISE AND NOISE-LIKE WAVEFORMS

8021 18 A technique for the generation of customizable ultra-wideband pseudo-noise waveforms [8021-45]
R. Vela, The Pennsylvania State Univ. (United States); D. Erisman, X-COM Systems (United States); R. M. Narayanan, The Pennsylvania State Univ. (United States)

8021 19 Brillouin precursor waveforms pertaining to UWB noise radar signals propagating through dispersive media [8021-46]
M. Dawood, New Mexico State Univ. (United States); A. V. Alejos, New Mexico State Univ. (United States) and Univ. de Vigo (Spain)

8021 1A A technique for the extraction of ultra-wideband (UWB) signals concealed in frequency band folded responses [8021-48]
R. Vela, R. M. Narayanan, The Pennsylvania State Univ. (United States); D. Erisman, X-COM Systems (United States)

SESSION 10 IMAGING AND DETECTION USING NOISE RADAR

8021 1B SAR imagery using chaotic carrier frequency agility pulses [8021-49]
X. Xu, X. Feng, BeiHang Univ. (China)

8021 1D Target discrimination technique utilizing noise waveforms [8021-51]
G. Woodington, M. DeLuca, R. Maro, D. Lemus, Raytheon Co. (United States); R. Vela, R. Narayanan, The Pennsylvania State Univ. (United States)

8021 1E Design and implementation of random noise radar with spectral-domain correlation for moving target detection [8021-52]
J. P. Kim, C. H. Jeong, C. H. Kim, Chung-Ang Univ. (Korea, Republic of)

8021 1F Passive radar imaging of moving targets using distributed apertures [8021-53]
L. Wang, Nanjing Univ. of Aeronautics and Astronautics (China); B. Yazici, Rensselaer Polytechnic Institute (United States)

SESSION 11 CHAOTIC AND NOISE-LIKE RADAR SYSTEMS

8021 1H Concept for low-cost chaos radar using coherent reception [8021-55]
J. N. Blakeley, N. J. Corron, U.S. Army Aviation and Missile Research, Development, and Engineering Ctr. (United States)

8021 1I Nonlinear dynamics method for target identification [8021-56]
T. L. Carroll, F. J. Rachford, U.S. Naval Research Lab. (United States)

SESSION 12 POSTER SESSION

8021 1K ECCM performance analysis of chaotic coded orthogonal frequency division multiplexing (COFDM) SAR [8021-58]
X. Feng, X. Xu, BeiHang Univ. (China)
Noise radar with broadband microwave ring correlator [8021-59]
W. Susek, B. Stec, Military Univ. of Technology (Poland)

Interference suppression in noise radar systems [8021-60]
S. Djukanović, M. Daković, Univ. of Montenegro (Montenegro); T. Thayaparan, Defence Research and Development Canada (Canada); L. Stanković, Univ. of Montenegro (Montenegro)

Detection and identification of concealed weapons using matrix pencil [8021-61]
R. S. Adve, Univ. of Toronto (Canada); T. Thayaparan, Defence Research and Development Canada (Canada)

Through-the-wall detection of human activity [8021-62]
T. Johansson, J. Rahm, J. Gustavsson, S. Nilsson, A. Surne, A. Örbom, Swedish Defence Research Agency (Sweden)

Some comments on GMI false alarm rate [8021-63]
A. W. Doerr, Sandia National Labs. (United States)

Optimal antenna beamwidth for stripmap SAR [8021-64]
A. W. Doerr, Sandia National Labs. (United States)

Synthetic aperture radar for disaster monitoring [8021-65]
R. Dunkel, R. Saddler, General Atomics Aeronautical Systems, Inc. (United States); A. W. Doerr, Sandia National Labs. (United States)

Design and implementation of a digital impulse generator for a 24GHz UWB radar [8021-66]
S.-D. Kim, J.-H. Lee, Daegu Gyeongbuk Institute of Science & Technology (Korea, Republic of)

DC-offset effect cancelation method using mean-padding FFT for automotive UWB radar sensor [8021-67]
Y. Ju, S.-D. Kim, J.-H. Lee, Daegu Gyeongbuk Institute of Science & Technology (Korea, Republic of)

Integrated radar-camera security system: experimental results [8021-68]
M. Życzkowski, N. Parka, T. Trzciński, R. Dulski, M. Kastek, P. Trzaskawka, Military Univ. of Technology (Poland)

Resolution analysis of bistatic SAR [8021-69]
G. Garza, Z. Qiao, The Univ. of Texas-Pan American (United States)

Side-looking image formation with a maneuvering vehicle-mounted antenna array [8021-70]

Wideband fiber optic vector modulator using 8-tap all-optical Hilbert transformer [8021-71]
R. Tucker, S. C. Granieri, A. Siahmakoun, Rose-Hulman Institute of Technology (United States)
Far-field scattering of random electromagnetic fields from particulate media [8021-73]
Z. Tong, O. Korotkova, Univ. of Miami (United States)

Stereo matching: performance study of two global algorithms [8021-74]
S. Arunagiri, V. J. Jordan, P. J. Teller, The Univ. of Texas at El Paso (United States); J. C. Deroba, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States); D. R. Shires, S. J. Park, L. H. Nguyen, U.S. Army Research Lab. (United States)

On the use of the Shark antenna for radar detection techniques [8021-75]
L. Desrumaux, M. Lalande, J. Andreieu, XLIM/OSA, IUT-GEII (France); V. Bertrand, CISTEME-ESTER (France); B. Jecko, XLIM/OSA, Univ. de Limoges (France)

Attenuation of front-end reflections in an impulse radar using high-speed switching [8021-76]
G. J. Mazzaro, M. A. Ressler, G. D. Smith, U.S. Army Research Lab. (United States)

Exploiting spatial diversity in MIMO radars with collocated antennas [8021-78]
G. Maalouli, D. Rosser, G. Stratis, Raytheon Missile Systems (United States)

Sidelobe minimization in MTI processing [8021-79]
K. Ranney, A. Martone, R. Innocenti, L. Nguyen, U.S. Army Research Lab. (United States)

Author Index
Conference Committee

Symposium Chair

William Jeffrey, HRL Laboratories, LLC (United States)

Symposium Cochair

Kevin P. Meiners, Office of the Secretary of Defense (United States)

Conference Chairs

Kenneth I. Ranney, U.S. Army Research Laboratory (United States)
Armin W. Doerry, Sandia National Laboratories (United States)

Program Committee

Fauzia Ahmad, Villanova University (United States)
Sean M. Buckley, Jet Propulsion Laboratory (United States)
Joseph C. Deroba, U.S. Army CERDEC Intelligence and Information Warfare Directorate (United States)
Doreen M. Dyck, Defence Research and Development Canada (Canada)
Benjamin C. Flores, The University of Texas at El Paso (United States)
John E. Gray, Naval Surface Warfare Center Dahlgren Division (United States)
Majeed M. Hayat, The University of New Mexico (United States)
Todd A. Kastle, Air Force Research Laboratory (United States)
Seong-Hwoon Kim, Raytheon Space & Airborne Systems (United States)
James L. Kurtz, University of Florida (United States)
Changzhi Li, Texas Tech University (United States)
Jenshan Lin, University of Florida (United States)
David G. Long, Brigham Young University (United States)
Jia-Jih Lu, General Atomics Aeronautical Systems, Inc. (United States)
Anthony F. Martone, U.S. Army Research Laboratory (United States)
Atindra K. Mitra, Air Force Research Laboratory (United States)
George J. Moussally, Mirage Systems (United States)
Lam H. Nguyen, U.S. Army Research Laboratory (United States)
Hector A. Ochoa-Gutierrez, The University of Texas at Tyler (United States)
Meppalli K. Shandas, dB Control (United States)
Jerry Silviou, U.S. Army Research Laboratory (United States)
Brian Smith, U.S. Army Armament Research, Development and Engineering Center (United States)
Helmut H. Suess, Deutsches Zentrum für Luft- und Raumfahrt e.V. (Germany)
David Tahmoush, U.S. Army Research Laboratory (United States)
Lars M. Wells, Sandia National Laboratories (United States)
Steven J. Weiss, U.S. Army Research Laboratory (United States)

Session Chairs

1 Systems and Applications
 James L. Kurtz, University of Florida (United States)

2 Phenomenology I
 Meppalli K. Shandas, dB Control (United States)
 Gregory J. Mazzaro, U.S. Army Research Laboratory (United States)

3 Phenomenology II
 Lam H. Nguyen, U.S. Army Research Laboratory (United States)
 Anthony F. Martone, U.S. Army Research Laboratory (United States)

4 Through the Wall Radar
 Atindra K. Mitra, Air Force Research Laboratory (United States)
 Jerry Silvious, U.S. Army Research Laboratory (United States)

5 Metamaterials for Radar
 Steven J. Weiss, U.S. Army Research Laboratory (United States)

6 Applications and Techniques I
 Seong-Hwoon Kim, Raytheon Space & Airborne Systems (United States)
 David Tahmoush, U.S. Army Research Laboratory (United States)

7 Applications and Techniques II
 John E. Gray, Naval Surface Warfare Center Dahlgren Division (United States)
 Fauzia Ahmad, Villanova University (United States)

8 Signal Processing in Noise Radar
 Ram M. Narayanan, The Pennsylvania State University (United States)

9 Adaptive Generation of Noise and Noise-Like Waveforms
 Thayananthan Thayaparan, Defence Research and Development Canada (Canada)

10 Imaging and Detection Using Noise Radar
 Konstantin A. Lukin, Usikov Institute of Radiophysics and Electronics (Ukraine)
Adaptive detection of range-spread targets by the generalized detector

Vyacheslav Tuzlukov

EE School, College of IT Engineering, Kyungpook National University, 1370 Sankyuk-dong, Buk-gu, Daegu 702-701, South Korea

ABSTRACT

In this paper, we address an adaptive detection of range-spread targets or targets embedded in Gaussian noise with unknown covariance matrix by the generalized detector (GD) based on the generalized approach to signal processing (GASP) in noise. We assume that cells or secondary data that are free of signal components are available. Those secondary data are supposed to process either the same covariance matrix or the same structure of the covariance matrix of the cells under test. In this context, under designing GD we use a two-step procedure. The criteria lead to receivers ensuring the constant false alarm rate (CFAR) property with respect to unknown quantities. A thorough performance assessment of the proposed detection strategies highlights that the two-step design procedure of decision-making rule in accordance with GASP is to be preferred with respect to the plain one. In fact, the proposed design procedure leads to GD that achieves significant improvement in detection performance under several situation of practical interest. For estimation purposes, we resort to a set of secondary data. In addition to the classical homogeneous scenario, we consider the case wherein the power value of primary and secondary data vectors is not the same. The design of adaptive detection algorithms based on GASP in the case of mismatch is a problem of primary concern for radar applications. We demonstrate that two-step design procedure based on GASP ensures minimal loss.

Keywords: Generalized detector, additive Gaussian noise, detection performance, constant false alarm rate (CFAR), generalized approach to signal processing (GASP), high resolution radar, signal-to-noise ratio (SNR).

1. INTRODUCTION

High-resolution radar (RHR) can resolve a target into a number of scattering centers, depending on the range extent of the target and the range resolution capabilities of the radar. In fact, measurements indicate that the radar properties of several targets, such as aircraft, boats, etc., are well modeled as being due primary to reflection from a few isolated points. These specular reflections match well with physical features on the target. In the following, the discrete scattering centers of a target will be referred to as multiple dominant scattering centers. In particular, radar detection of distributed targets in white Gaussian noise of known spectral density level has been addressed in [1]. Therein, two detection structures have been proposed, and the results indicate that properly designed HRBs allow significant enhancement of the detection performance. The possible improvement depends upon two factors: a) increasing the range resolution of the radar reduces the amount of energy per cell backscattered by distributed clutter and b) resolved scatterers introduce less fluctuation than an unresolved point target. However, this performance improvement is traded for a significant increase of the computational complexity. Therefore, a more general issue arises, i.e., the suitability of HRBs for operation in the scan mode, which is hard to implement at the current state of the art but may not be definitely ruled out in the near future. This explains the increasing academic and industry interest on the design and the assessment of new receivers for HRBs with a two-fold goal. In fact, from one side, it is important to determine the maximum gain, in terms of achievable performance, with no complexity constraint, granted by HRBs on lower resolution radars. On the other side, one is interested to come up with suboptimum processors, representing a compromise between detection performance and complexity, demonstrating the applicability of HRBs in the scan mode. Several results, established with reference to HRBs can be easily imported in the general theory of range-spread target detection. It is needed well known that the point-target model may fail in many practical scenarios wherein a low/medium resolution radar is employed: for example, detection of large ships with coastal radars and that of a cluster of point targets flying at the same velocity in close spatial proximity to one another. The detection of the overall target set within the input data block is a way to combat signal combination of range cells in close spatial proximity with that under test and, hence, to reduce the corresponding detection loss. The effects of the clutter reduction in a single range cell and of a multiple dominant scattering target model on the target detection have been studied in [2], where was shown that the probability of detection of range-distributed targets depends on the signal

*tuzlukov@ee.knu.ac.kr; phone +82 053 950-5509; fax +82 052 950-5505; spl.ee.knu.ac.kr

Radar Sensor Technology XV, edited by Kenneth I. Ranney, Armin W. Doerry,
doi: 10.1117/12.83759

Proc. of SPIE Vol. 8021 802112-1
bandwidth in case of single pulse processing. The best performance is achieved when the radar bandwidth just resolves the individual scatterers. Resolving the dominant scatterers introduces less fluctuation, but when the signal bandwidth is further increased, the performance degrades as a consequence of the lack of knowledge about the position of the dominant scatterers within the extension of the target. This performance loss, which is referred to in the following as collapsing loss, is due to the presence of cells that contain mostly noise. A possible way to circumvent this drawback is to resort to a Bayesian approach, namely, to assume some a priori statistical knowledge about the target. Since the scattering geometry can differ significantly from target to target, the above approach is not always realistic. Constant false alarm rate detection (CFAR) of distributed targets in Gaussian noise with unknown covariance matrix, based on the generalized likelihood ratio test (GLRT), has been addressed in 7-9. Returns from different range cells are modeled as independent identically distributed (i.i.d.) Gaussian vectors with unknown covariance matrix. A set of independent secondary data that is free of signal components is available, and it is assumed that the covariance matrix is one and the same for all of the primary and secondary data vectors. The above scenario will be referred to in the following as homogeneous environment.

In 11, a modified GLRT for adaptive detection of a target distributed in range is derived, where the amplitudes of the desired target and the interference covariance matrix are modeled as unknown quantities, but the proposed strategy does not resort to secondary data. The distribution of the modified GLRT statistic, under the hypothesis H_0 — the noise only, — is dependent on the actual value of the covariance matrix and, hence, does not have the desirable quality of being CFAR processor. The proposed algorithm can be made bounded CFAR 11, thus being a viable means to adaptively detect rangespread targets embedded in a highly nonstationary environment. In 12 it is shown how additional data blocks, which are free of signal components, can be used to construct a truly CFAR detector. GLRT for the adaptive detection of Doppler-shifted, and range-distributed targets embedded in noise with unknown, but structured, covariance matrix has been proposed in 13. Such detector has been shown to be bound CFAR via simulation. In the present paper, we deal with the problem of detecting an extended target or targets (with unknown amplitudes) embedded in Gaussian noise with unknown covariance matrix across a number of adjacent range cells which are also referred to in the following as a primary data. For estimation purposes, we resort to a set of secondary data. We will consider the case wherein the power value of primary and secondary data vectors is not the same or more precisely, both groups of data separately satisfy the homogeneity condition, but the two covariance matrices coincide only up to a scaling factor. This scenario is referred to as a partially homogenous environment. The design of the adaptive detection algorithms in the case of mismatch is a problem of primary concern for radar applications. Although most of the space-time adaptive processing detection schemes have been designed employing the assumption that interference returns were i.i.d. Gaussian vectors, experimental campaigns have demonstrated that such an assumption is not always verified. In addition, the analysis of several space-time adaptive processing algorithms, mostly conducted assuming homogeneity of the secondary data, has shown that inhomogeneities magnify the loss between the adaptive implementation and optimum conditions. Although other types of inhomogeneities are of interest, the design of GLRT-based detectors is not always feasible. Partially homogeneous environment is also a viable means to address detection of signals buried in non-Gaussian disturbances. The Gaussian assumption is no longer met for modeling HRR clutters as viewed at low grazing angles. More specifically, the disturbance is better described as a compound-Gaussian process. It is the product of a temporary and spatially slowly varying texture component, accounting for the reflectivity of the illuminated patch, times a more rapidly varying process, the so-called speckle Gaussian distributed process, due to the local validity of the central limit theorem. The spatial correlation of the texture is usually unknown and is thus a viable means to cope with this a priori uncertainty. It relies on modeling, at the design stage, and returns as independent Gaussian vectors with possibly different power values. This procedure has been followed in 22, where non-adaptive detectors for range-spread targets embedded in compound-Gaussian noise with possibly varying texture from cell to cell have been introduced and assessed. With this model in mind, partially homogeneous scenarios fit in situations where the maximum spacing between any two primary range cells is small compared with the scale over which texture levels change, and the same holds true for secondary data. This case may apply, for instance, if primary vectors are chosen from a set of adjacent range cells and similarly for secondary data, but data under test are not in the immediate vicinity of secondary gates. Analysis of clutter recordings which are collected to emulate airborne radars, have shown that the partially homogeneous model well describes clutter for moderately low values of the number of primary and secondary data. We derive the GLRT based on the generalized approach to signal processing (GASP) in noise for a partially homogeneous environment. We devise simplified detection strategies following. This work is motivated by two main considerations. GLRT-based generalized detector (GD) is very time consuming and, hence, difficult to implement for real-time applications. Additionally, the GLRT has no known optimality properties and, for homo-
geneous environment and point-like targets, simplified test statistics may achieve higher detection probabilities\(^{30}\). In that case, the GLRT GD is not a uniformly most powerful (UMP) invariant one, and actually, a UMP-invariant test does not exist, as shown in\(^{32}\). In particular, in\(^{30}\) the following two-step GLRT-based design procedure has been proposed. The first step is to derive the GLRT GD for the case where the covariance matrix of primary data \(\mathbf{M}\) is known. The second step is to insert the sample covariance matrix based on secondary data in place of the true covariance matrix into the test. A possible alternative has been conceived in\(^{31}\), namely, the first step is to derive the GLRT for the case that only the structure \(\Sigma\) of the covariance matrix is known. A completely adaptive GD is obtained by plugging the sample covariance matrix, based upon secondary data in place of \(\Sigma\) into the previously derived test statistic.

2. PROBLEM STATEMENT AND DESIGN

We assume that data are collected from \(N\) sensors and deal with the problem of detecting the presence of a target across \(L\) range cells \(z_{l}, l = 1, \ldots, L\). We suppose that the possible target is completely contained within those data and neglect range migration. As in\(^{10}\), it is assumed that a secondary data set \(z_{l}, l = L + 1, \ldots, L(K + 1)\) is available and that each of such snapshots does not contain any useful target echo and exhibits the same structure of the covariance matrix as the primary data. The rationale of the assumed setup is to emphasize the existing relationship between target extent, cell size, and radar resolution. If the radar resolution is increased by a factor \(L\), the cell size is reduced by the same factor, and the number of secondary data increases accordingly. Hence, the proposed arrangement of the data allows the comparison of the performance at different resolutions, in particular, when the \(L\) range cells collapse into a larger one. The detection problem to be solved can be formulated in terms of the following binary hypotheses test:

\[
\begin{align*}
H_0 : & \quad z_l = n_{l,sp}^s, \quad l = 1, \ldots, L(K + 1) \\
H_1 : & \quad z_l = \alpha_l \mathbf{p} + n_{l,sp}^s, \quad l = 1, \ldots, L \\
& \quad z_l = n_{l,sp}^s, \quad l = L + 1, \ldots, L(K + 1)
\end{align*}
\]

where \(\mathbf{p}\) denotes the steering vector, and the \(\alpha_l, l = 1, \ldots, L\), are unknown deterministic parameters accounting for both the target and the channel effects. As for the noise vectors, we assume that \(n_{l,sp}^s, l = 1, \ldots, L, L(K + 1)\), are independent zero mean Gaussian vectors with covariance matrices given by

\[
E[n_{l,sp}^s n_{l,sp}^{s*}] = E[n_{l,sp}^{s*} n_{l,sp}^s] = \mathbf{M}, \quad l = 1, \ldots, L(K + 1)
\]

for the homogeneous environment and

\[
E[n_{l,sp}^s n_{l,sp}^{s*}] = E[n_{l,sp}^{s*} n_{l,sp}^s] = \mathbf{M}, \quad l = 1, \ldots, L
\]

\[
E[n_{l,sp}^s n_{l,sp}^{s*}] = \delta \mathbf{M}, \quad l = L + 1, \ldots, L(K + 1)
\]

for the partially homogeneous environment with \(\delta > 0\), where \(E[\cdot]\) denotes statistical expectation and \(\ast\) conjugate transpose. Moreover, we suppose that the noise vectors \(n_{l,sp}^s\) possess the circular property usually associated with in-phase and quadrature pairs of a wide-sense stationary process\(^{33}\). Difference between the noise \(n_{l,sp}^s\) and \(n_{l,sp}^s\) is explained below (Subsection 2.1). According to the Neyman–Pearson criterion, the optimum solution to the hypotheses testing problem (1) is the likelihood ratio test based on GASP, but for the case at hand, it cannot be implemented since total ignorance of the parameters \(\alpha = (\alpha_1, \ldots, \alpha_L, \mathbf{M})\), and possibly \(\delta\) is assumed. We resort to GLRT-based decision schemes based on GASP. Strictly speaking, the GLRT-based on GASP is tantamount to replace the unknown parameters with their maximum likelihood estimates under each hypothesis based on entirely of data\(^{35}\). Processors that implement the plain GLRT will be referred to in the following as one-step GLRT GD. Receivers implementing modified GLRT statistics derived following the two-step design procedure will be referred to as two-step GLRT GD. Subsequent developments require specifying the complex multivariate probability density function (pdf) of the \(L(K + 1)\) vectors \(z_1, \ldots, z_{L(K + 1)}\) under both hypotheses. Previous assumptions imply that the joint pdf may be written in the following form:

\[
f_{z_1, \ldots, z_{L(K+1)}}(z_1, \ldots, z_{L(K+1)} \mid \mathbf{M}, \delta, H_0) = \frac{1}{\delta^{NLK} \pi^N \det(\mathbf{M})^L(K+1)} \exp\left\{-\text{tr}(\mathbf{M}^{-1}\mathbf{T}_0)\right\} \text{ the hypothesis } H_0;
\]
\[
f_{\mathbf{z}_1, \ldots, \mathbf{z}_{L(K+1)}}(\mathbf{z}_1, \ldots, \mathbf{z}_{L(K+1)} | \mathbf{M}, \mathbf{a}, \delta, H_j) = \frac{1}{\delta^{N_{0}E}} \left(\det(\mathbf{M}) \right)^{\frac{L(K+1)}{2}} \exp \left\{ -\frac{1}{\delta} \mathbf{r}^T(\mathbf{M}^{-1}\mathbf{T}_j) \right\} - \text{the hypothesis } H_j; \tag{5} \]

\[
\mathbf{T}_0 = -\sum_{l=1}^{L} \mathbf{n}_{l\alpha}^* \mathbf{n}_{l\gamma} + \sum_{l=1}^{L} \mathbf{n}_{l\alpha}^* \mathbf{n}_{l\alpha} + \frac{1}{\delta} \sum_{l=L+1}^{L(K+1)} \mathbf{n}_{l\alpha}^* \mathbf{n}_{l\alpha} - \text{the hypothesis } H_0; \tag{6} \]

\[
\mathbf{T}_1 = \sum_{l=1}^{L} (\mathbf{z}_l - \alpha_l \mathbf{p})(\mathbf{z}_l - \alpha_l \mathbf{p})^* + \sum_{l=1}^{L} \mathbf{n}_{l\alpha}^* \mathbf{n}_{l\alpha} + \frac{1}{\delta} \sum_{l=L+1}^{L(K+1)} \mathbf{n}_{l\alpha}^* \mathbf{n}_{l\alpha} - \text{the hypothesis } H_1. \tag{7} \]

Here \(\det(\cdot) \) and \(tr(\cdot) \) denote the determinant and the trace of a square matrix, respectively. Obviously \(\delta \) is to be set equal to one under homogeneous environment.

2.1 Generalized detector

For better understanding (1)–(7), we recall the main thinking principles of GD. The simple model of GD in form of block diagram is represented in Fig.1. In this model, we use the following notations: MSG is the model signal generator (local oscillator), the AF is the additional filter (the linear system) and the PF is the preliminary filter (the linear system). A detailed discussion of the AF and PF can be found in [24, 26]. Consider briefly the main statements regarding the AF and PF. There are two linear systems at the GD front end that can be presented, for example, as bandpass filters, namely, the PF with the impulse response \(h_{PF}(\tau) \) and the AF with the impulse response \(h_{AF}(\tau) \). For simplicity of analysis, we think that these filters have the same amplitude-frequency responses and bandwidths. Moreover, a resonant frequency of the AF is detuned relative to a resonant frequency of PF on such a value that signal cannot pass through the AF (on a value that is higher the signal bandwidth). Thus, the signal and noise can be appeared at the PF output and the only noise is appeared at the AF output. It is well known, if a value of detuning between the AF and PF resonant frequencies is more than \(4 + 5 \Delta f_a \), where \(\Delta f_a \) is the signal bandwidth, the processes forming at the AF and PF outputs can be considered as independent and uncorrelated processes (in practice, the coefficient of correlation is not more than 0.05). In the case of signal absence in the input process, the statistical parameters at the AF and PF outputs will be the same, because the same noise is coming in at the AF and PF inputs, and we may think that the AF and PF do not change the statistical parameters of input process, since they are the linear GD front end systems. By this reason, the AF can be considered as a generator of reference sample with a priori information a “no” signal is obtained in the additional reference noise forming at the AF output. There is a need to make some comments regarding the noise forming at the PF and AF outputs. If the Gaussian noise \(n(t) \) comes in at the AF and PF inputs (the GD linear system front end), the noise forming at the AF and PF outputs is Gaussian, too, because the AF and PF are the linear systems and, in a general case, take the following form:

\[
n_{l\gamma}(t) = \int_{-\infty}^{\infty} h_{PF}(\tau)n_\gamma(t) \, d\tau \quad \text{and} \quad n_{l\alpha}(t) = \int_{-\infty}^{\infty} h_{AF}(\tau)n_\alpha(t) \, d\tau \tag{8} \]

If the additive white Gaussian noise (AWGN) with zero mean and two-sided power spectral density \(0.5N_0 \) is coming in at the AF and PF inputs (the GD linear system front end), then the noise forming at the AF and PF outputs is Gaussian with zero mean and variance given by \(\sigma_n^2 = \frac{N_0}{8\Delta f} \) where in the case if AF (or PF) is the RLC oscillatory circuit, the AF (or PF) bandwidth \(\Delta_f \) and resonance frequency \(\omega_0 \) are defined in the following manner \(\Delta_f = \pi \beta, \omega_0 = \frac{\pi}{\sqrt{LC}}, \beta = \frac{2}{L} \). The main functioning condition of GD is an equality over the whole range of parameters between the model signal \(\alpha_l \mathbf{p} \) at the GD MSG output for user \(l \) and the expected signal \(\alpha_l \mathbf{p} \) forming at the GD input linear system (the PF output), i.e. \(\alpha_l \mathbf{p} = \alpha_l \mathbf{p} \). How we can satisfy this condition in practice is discussed in detail in [24, 26]. More detailed discussion about a choice of PF and AF and their amplitude-frequency responses is given in [27] (see also http://www.sciencedirect.com/science/journal/10512004, click “Volume 8, 1998”, “Volume 8, Issue 3”, and “A new approach to signal detection theory”).

2.2 One-step GLRT GD

This subsection contains the derivation of the GLRT GD for the partially homogeneous environment. According to the GLRT, we replace the unknown parameters with their maximum likelihood estimates and consider the following decision-making rule:

Proc. of SPIE Vol. 8021 802112-4
\[
\begin{align*}
\max_{\delta} \max_{\mathbf{a}} \max_{\mathbf{M}} f_{z_1, \ldots, z_{L+1}}(z_1, \ldots, z_{L+1} \mid \mathbf{M}, \mathbf{a}, \delta, H_1) & \quad \overset{H_1}{\geq} C, \\
\max_{\delta} \max_{\mathbf{M}} f_{\mathbf{n}_{n,df}, \ldots, \mathbf{n}_{L+1,df}}(\mathbf{n}_{n,df}, \ldots, \mathbf{n}_{L+1,df} \mid \mathbf{M}, \delta, H_0) & \quad \overset{H_0}{\leq} C.
\end{align*}
\]

Substituting the multivariate Gaussian probability density functions (pdf) (4) and (5), we obtain
\[
\begin{align*}
\max_{\delta} \max_{\mathbf{a}} \max_{\mathbf{M}} \exp \left\{ -\mathbf{r}^T (\mathbf{M}^{-1} \mathbf{T}) \right\} & \quad \overset{H_1}{\geq} C, \\
\max_{\delta} \max_{\mathbf{M}} \exp \left\{ -\mathbf{r}^T (\mathbf{M}^{-1} \mathbf{B}) \right\} & \quad \overset{H_0}{\leq} C.
\end{align*}
\] (9)

Assume that \(L(K+1) \geq N\). Maximizing the numerator and denominator over \(\mathbf{M}\), (10) can be given by
\[
\begin{align*}
\min_{\delta} \left[\delta^{NK} \det(\mathbf{T}) \right] & \quad \overset{H_1}{\geq} C, \\
\min_{\delta} \left[\delta^{NK} \min_{\alpha} \det(\mathbf{T}) \right] & \quad \overset{H_0}{<} C.
\end{align*}
\] (11)

As was shown in [5], it is possible to maximize (11) with respect to the complex vector \(\mathbf{a}\) assuming \(LK \geq N\), i.e.
\[
\hat{\mathbf{a}} = \arg \min_{\alpha} \det(\mathbf{T}) = \begin{pmatrix} p^* \mathbf{S}^{-1} \mathbf{z}_1 & \cdots & p^* \mathbf{S}^{-1} \mathbf{z}_L \end{pmatrix},
\] (12)

where \(\arg \min_{\alpha} (\cdot)\) denotes the value of \(\mathbf{a}\) that minimizes the argument, and \(\mathbf{S}\) is \(LK\) times the sample covariance matrix based on secondary data only, i.e.
\[
\mathbf{S} = \sum_{l=L+1}^{L(K+1)} \mathbf{n}_{l,df} \mathbf{n}_{l,df}^*.
\] (13)

Hereafter, we set \(LK \geq N\). Direct substitution of \(\hat{\mathbf{a}}\) into (11) leads to the following expression for the GLRT-based GD decision-making rule:
\[
\begin{align*}
\min_{\delta} \left[\delta^{NK} \det(\mathbf{R}_0 + \delta^{-1} \mathbf{S}) \right] & \quad \overset{H_1}{\geq} C, \\
\min_{\delta} \left[\delta^{NK} \det(\mathbf{R}_1 + \delta^{-1} \mathbf{S}) \right] & \quad \overset{H_0}{<} C.
\end{align*}
\] (14)

\[
\mathbf{R}_0 = -\sum_{l=1}^L \mathbf{n}_{l,df} \mathbf{n}_{l,df}^* + \sum_{l=L+1}^{L(K+1)} \mathbf{n}_{l,df} \mathbf{n}_{l,df}^*; \\
\mathbf{R}_1 = \sum_{l=1}^L \left(\mathbf{z}_l - \frac{p^* \mathbf{S}^{-1} \mathbf{z}_l}{p^* \mathbf{S}^{-1} \mathbf{p}} \right) \times \left(\mathbf{z}_l - \frac{p^* \mathbf{S}^{-1} \mathbf{z}_l}{p^* \mathbf{S}^{-1} \mathbf{p}} \right)^*.
\] (15)

Plugging \(\delta = 1\) in (14), we get the GLRT GD for homogeneous environment, i.e.
\[
\frac{\det(\mathbf{R}_0 + \mathbf{S})}{\det(\mathbf{R}_1 + \mathbf{S})} \overset{H_1}{\geq} C, \quad \overset{H_0}{<} C.
\] (17)

The detector (17) has CFAR property with respect to \(\mathbf{M}\). Assuming that the radar is not able to resolve individual parts of a possible target and \(L = 1\), the detector (17) reduces to that proposed in [28]. It can be shown that the proposed test statistic (17) coincides with the GLRT with respect to the \(\mathbf{a}_l, l = 1, \ldots, L\), and \(\mathbf{M}\) when the noise is modeled as a complex multivariate elliptically contoured distribution [36] and, in particular, as a spherically invariant random process [37] with all of the range cells sharing the same value of the texture. This result partially generalizes that derived in [30]. In order to come up with the GLRT GD for a partially homogeneous environment there is a need to minimize both the numerator and the denominator of (18) with respect to \(\delta\). As was shown in [35], if \(LK \geq N\) and denoting \(m = \frac{NK}{K+1}\), the one-step GLRT GD (14) can be presented as
\[
\hat{\delta}_{0, k+1}^2 \det \left(R_0 + \hat{\delta}_{0}^{-1} S \right) > C, \\
\hat{\delta}_{1, k+1}^2 \det \left(R_1 + \hat{\delta}_{1}^{-1} S \right) > C_{H_0}.
\]

where \(\hat{\delta}_j, (j = 0, 1) \) is the positive solution of equation

\[
\sum_{l=1}^{w_l} \frac{\lambda_{l,j} \hat{\delta}}{\lambda_{l,j} \hat{\delta} + 1} = \frac{N}{K + 1}, \quad j = 0, 1
\]

with \(w_0 = \min \{ L, N \} \) and the \(\lambda_{l,0,j}, l = 1, \ldots, w_0 \) denoting the nonzero eigenvalues of the matrix \(S^{-0.5} R_0 S^{-0.5} \) under the hypothesis \(H_0 \), and \(w_1 = \min \{ L, N - 1 \} \) and the \(\lambda_{l,1,j}, l = 1, \ldots, w_1 \) denoting the nonzero eigenvalues of the matrix \(S^{-0.5} R_1 S^{-0.5} \) under the hypothesis \(H_1 \). It is important to point out that the newly introduced GLRT GD ensures the CFAR property with respect to the covariance matrix of both primary and secondary data. Due to complexity of the corresponding statistics, the real-time implementation of the above GLRT GD can be a formidable task, even for a high-performance computer. It is thus of relevant interest to investigate the suitability of simplified structures.

2.3 Two-step GLRT GD

We first derive the GLRT GD based on primary data assuming that the covariance matrix \(\mathbf{M} \) or its structure \(\Sigma \) is known. Fully adaptive detectors are obtained by substituting the unknown matrix by the sample covariance matrix based on secondary data only.

Step 1. The pdf of the first \(L \) vectors under the hypothesis \(H_0 \) and \(H_1 \) is given by

\[
f_{\mathbf{n}_{1,LF}, \ldots, \mathbf{n}_{L,LF} \mid \mathbf{M}, H_0} = \frac{1}{[\pi^N \det(\mathbf{M})]^L} \exp \left\{ -tr(\mathbf{M}^{-1} \mathbf{T}_0) \right\};
\]

\[
f_{\mathbf{z}_1, \ldots, \mathbf{z}_L \mid \mathbf{M}, \mathbf{a}, H_1} = \frac{1}{[\pi^N \det(\mathbf{M})]^L} \exp \left\{ -tr(\mathbf{M}^{-1} \mathbf{T}_1) \right\};
\]

\[
\begin{align*}
\mathbf{T}_0 &= -\sum_{l=1}^{L} \mathbf{n}_{l,PF} \mathbf{n}_{l,PF}^T + \sum_{l=1}^{L} \mathbf{n}_{l,AF} \mathbf{n}_{l,AF}^T = \mathbf{R}_0; \\
\mathbf{T}_1 &= \sum_{l=1}^{L} (\mathbf{z}_l - \mathbf{a}_l \mathbf{p})(\mathbf{z}_l - \mathbf{a}_l \mathbf{p})^T + \sum_{l=1}^{L} \mathbf{n}_{l,AF} \mathbf{n}_{l,AF}^T.
\end{align*}
\]

Denote \(\mathbf{M} \) by \(4\sigma^4 \Sigma \), where \(4\sigma^4 \) is the \((1,1) \)th component of the Toeplitz matrix \(\mathbf{M} \). The derivation is begun by writing the GLRT under the assumption that the covariance matrix or its structure only is known. It is given by for known \(\mathbf{M} \)

\[
\max_{\mathbf{a}} \frac{\mathbf{f}_{\mathbf{z}_1, \ldots, \mathbf{z}_L \mid \mathbf{M}, \mathbf{a}, H_1}}{\mathbf{f}_{\mathbf{n}_{1,LF}, \ldots, \mathbf{n}_{L,LF} \mid \mathbf{M}, H_0}^{H_0}} > C, \quad H_1
\]

\[
\max_{\mathbf{a}} \frac{\mathbf{f}_{\mathbf{z}_1, \ldots, \mathbf{z}_L \mid \mathbf{a}, 4\sigma^4 \Sigma, H_1}}{\mathbf{f}_{\mathbf{n}_{1,LF}, \ldots, \mathbf{n}_{L,LF} \mid 4\sigma^4 \Sigma, H_0}^{H_0}} > C, \quad H_1
\]

for known \(\Sigma \), respectively. Substituting the multivariate Gaussian pdfs (20) and (21) in the previous formulas and performing required maximizations yields for known \(\mathbf{M} \) and \(\Sigma \), respectively

\[
\sum_{l=1}^{L} |\mathbf{p}^T \mathbf{M}^{-1} \mathbf{z}_l|^2 > C, \quad H_1
\]

\[
\sum_{m=1}^{L} |\mathbf{p}^T \Sigma^{-1} \mathbf{n}_m^T \Sigma^{-1} \mathbf{n}_m| > C, \quad H_0
\]
\(|\cdot|\) denotes the modulus of a complex number. There is a need to distinguish \(z_l\) under the hypotheses \(H_0\) and \(H_1\) (1)-(3). Note that the left hand side of (25) is the sum of statistics corresponding to \(L = 1\) over the cells under test. Note also that when \(\Sigma\) is known, the denominator of the left hand side of (25) is independent of data. Construction of the left hand side of (26) is a bit different. To see the point, observe that it can be recast as

\[
\sum_{l=1}^{L} \frac{1}{2(N-1)L} \left(\frac{1}{L} \sum_{m=1}^{L} |n_{m,AF}^\perp|^2 \right)^{\frac{1}{2}} > C, \quad H_1
\]

\(\cdot\) is the Euclidean norm of an \(N\)-dimensional vector over the complex field; \(v_l = \Sigma^{-0.5} z_l\) is the “whitened” version of \(z_l\) \(n_{m,AF}^\perp\) is the component of \(n_{m,AF}\) orthogonal to the direction of \(u\). Thus, for \(L = 1\), the test statistic is obtained by normalizing that corresponding to a conventional incoherent processing based on GASP to the estimated clutter power based on data from the cell under test\(^{38}\). If \(L > 1\), the left hand side of (26) is not exactly the sum of the statistics corresponding to \(L = 1\) over the cells under test since the normalization factor of each term of the sum is now an estimate of the clutter power based on all of the \(n_{m,AF}^\perp\), \(m = 1, \ldots, L\).

Step 2. Remember that \(LK \geq N\). We can make GD (25) and (26) fully adaptive by plugging the maximum likelihood estimate of \(\hat{\mathbf{M}}\) based on the secondary data \(z_l = n_{l,AF}^\perp, l = L+1, \ldots, L(K+1)\), i.e. \(\hat{\mathbf{M}} = \frac{1}{LK} \sum_{l=L+1}^{L(K+1)} n_{l,AF}^\perp n_l^\perp\) in place of \(\mathbf{M}\) in (25) and of \(\Sigma\) in (26). Equivalently, we can substitute \(\mathbf{M}\) and \(\Sigma\) by \(\mathbf{S}\). The resulting decision-making rules referred to in the following as the adaptive GD (AGD) and adaptive subspace GD (ASGD) are given by

\[
\sum_{l=1}^{L} \frac{|p^S_z z_l|^2}{p^S_z p} \geq C, \quad H_1
\]

\[
\sum_{l=1}^{L} \frac{|p^S_z z_l|^2}{p^S_z p \sum_{m=1}^{L} n_{m,AF}^\perp S_{m,AF} n_{l,AF}^\perp} \geq C, \quad H_0
\]

respectively. The above results derive some comments. Note that the AGD and ASGD reduce to the GD at \(L = 1\). It is also worth noting that the left hand side of (26) is invariant with respect to multiplication of \(\Sigma\) by a real constant, but such an invariance property does not extend to the left hand side of (25). Because of this, AGD has the CFAR property in homogeneous environment only, i.e. with respect to \(\mathbf{M}\), whereas the ASGD is a CFAR detector in both homogeneous and partially homogeneous environments, i.e. with respect to \(\mathbf{M}\) and to \(\delta\) and \(\mathbf{M}\), respectively. We see that AGD and ASGD do not require the on-line inversion of the matrix. The ASGD is slightly more complex than the AGD since it requires evaluation of the trace of matrix. It is apparent that the two-step GLRT GD detectors are faster to implement than the one-step GLRT GD for homogeneous environment. Finally, the implementation of the one-step GLRT GD for partially homogeneous environment requires to solve (19), under both hypotheses, and, hence, an additional computer cost with respect to the one-step GLRT GD for homogeneous environment.

3. DETECTION PERFORMANCE

Probability of detection \(P_d\) is a function of the target and clutter parameters \(\alpha_1, \ldots, \alpha_L, p, M\) only through the signal-to-noise ratio (SNR) defined as

\[
SNR = \frac{\sum_{l=1}^{L} |\alpha_l|^2}{N p^T M^{-1} p}
\]

Following\(^{10}\), we recast (28) and (29) in a more convenient form. Denote by \(U\) the unitary transformation aimed at rotating the vector \(M^{-0.5} p\) onto the direction of \(e_l = (1, 0, \ldots, 0)\) by \(x_l, l = 1, \ldots, L(K+1)\), the transformed whitened data vectors, and by \(C_{LK}\) times the sample covariance matrix of the transformed secondary data, i.e. \(U : UM^{-0.5} p = \sqrt{p^T M^{-1} p e_l}; x_l = \quad \)

Proc. of SPIE Vol. 8021 802112-7
\[\sum_{l=1}^{L} x_l - \sum_{m=L+1}^{L(K+1)} x_m q_{lm, n} \leq \sqrt{\frac{C}{\Delta}} \] (32)

\[\sum_{l=1}^{L} x_l - \sum_{m=L+1}^{L(K+1)} x_m q_{lm, n} \leq \sqrt{\frac{C}{\Delta}} \] (33)

where \(q_{lm, n} = x_m S_{lm, n}^{-1} x_l \). We see that owing to independence of the numerator and denominator in (32) and (33) (see 2.1), the denominator is a central chi-squared random variable with \(2(LK + 1 - N) \) degrees of freedom and the numerator is the Euclidean norm squared of the \(L \)-dimensional vector that under the hypothesis \(H_1 \) is a Gaussian vector with the mean vector \(\sqrt{p^* M^* p} \) and the covariance matrix \(I_L + \eta^* \eta S_{n-l, n}^{-1} \eta \), where \(\eta = (\eta_1, \ldots, \eta_L) \). Introducing the unitary transformation \(U \) aimed at rotating the vector \(\alpha \) onto the direction of \(e_1 \), it follows that under the hypothesis \(H_1 \) we have the Gaussian vector with the mean \(\{ \sum_{l=1}^{L} \alpha_{l, l} \} \sqrt{p^* M^* p} \) and the covariance matrix \(I_L + U^* \eta^* \eta S_{n-l, n}^{-1} \eta U \). Note that we can rewrite the right-hand side of (33) as \(\sum_{l=1}^{L} x_m q_{lm, n} (\eta^* \eta S_{n-l, n}^{-1} \eta U) - tr[U^* \eta^* \eta S_{n-l, n}^{-1} \eta U] \). The probability of detection \(P_D \) of GD (32) and (33) can be presented in the following form:

\[P_D = 1 - F_{U \eta^* \eta S_{n-l, n}^{-1} \eta} \left(\frac{C}{\sqrt{2(1-C)}} \right) \times tr[U^* \eta^* \eta S_{n-l, n}^{-1} \eta U], SNR \right) \] (35)

where \(F_{U \eta^* \eta S_{n-l, n}^{-1} \eta} \{ \cdot, SNR \} \) denotes the conditional cumulative distribution function (cdf) of the left-hand size of both tests.

In particular, previous notation highlights that the dependence of the conditional cdf on \(\eta_i, i = 1, \ldots, L(K+1) \) is confined to \(U \eta^* \eta S_{n-l, n}^{-1} \eta \). In order to determine \(P_D \), we can average out the \(\eta_i, i = 1, \ldots, L \) and then the \(\eta_i, i = L+1, \ldots, L(K+1) \). Following this guidance, we get for GD (32) and (33)

\[P_D = 1 - E_{U \eta^* \eta S_{n-l, n}^{-1} \eta} F_{U \eta^* \eta S_{n-l, n}^{-1} \eta} \left(\frac{C}{\sqrt{2}}, SNR \right) \times tr[U^* \eta^* \eta S_{n-l, n}^{-1} \eta U], SNR \right) \] (36)

\[P_D = 1 - E_{U \eta^* \eta S_{n-l, n}^{-1} \eta} F_{U \eta^* \eta S_{n-l, n}^{-1} \eta} \left(\frac{C}{\sqrt{2(1-C)}}, SNR \right) \times tr[U^* \eta^* \eta S_{n-l, n}^{-1} \eta U], SNR \right) \] (37)

respectively. We see that \(U \eta^* \eta \) is statistically equivalent to \(\eta^* \eta \) and independent of \(S_{n-l, n} \). A similar result holds true for the detector (17). Moreover, simulation results indicate that the GLRT GD should also possess this property.

4. SIMULATION RESULTS

The \(P_D \) and \(P_F \) are estimated by Monte Carlo technique based on \(P_F^{-1} \times 10^2 \) and \(P_D^{-1} \times 10^2 \) independent trials. As a consequence, in order to limit the computational burden, we assume \(P_F = 10^{-4} \). As for \(L \), we observe that it is lower bounded by the ratio between the range extent of the target and the range resolution of the radar. We consider small values of \(L \) (\(L \leq 20 \)) in order to save simulation times. Finally, we suppose that if the radar resolution is increased by a factor \(L \), i.e. the cell size is reduced by \(L \), the noise power per cell \(2\sigma_i^2 \) decreases by the same factor, i.e. we set \(\sigma_i^2 = \sigma_i^2 L^{-1} \).
4.1 Targets with nonrandom parameters

Before we discussed that the detection probabilities of the AGD and ASGD are independent of the actual multiple dominant scattering model being in force. This subsection is devoted to the performance evaluation of the GLRT GD (17) and (18), the AGD, and the ASGD. In Figs. 2–4, we consider a homogeneous environment. In particular, in Fig. 2, the P_D of the GLRT GD (17), the AGD, and the ASGD are plotted versus SNR at $N = 8, K = 16$, and several values of L. Note that $L = 1$ refers to unresolved targets. We see that increasing the radar resolution capabilities and suitably exploiting them can produce a significant detection gain and the corresponding curves of the AGD and GLRT GD intersect, and in particular, the AGD outperforms the one-step GLRT GD at high values of P_D. For example, at $L = 4$, the AGD outperforms the GLRT GD for all values of P_D of practical interest ($P_D > 0.5$). The ASGD is poorer than the other two receivers, but the loss is less than 2.5 dB at $P_D < 0.9$. This behavior is valid at $LK > 2N$. Finally, the loss of the AGD and ASGD with respect to GLRT GD (25), namely, the one that possesses perfect knowledge of the covariance matrix M of the noise, can be read off Figs. 3 and 4 at $N = 8, K$ as a parameter, $L = 2$ and $L = 4$, respectively. In Fig. 4 we plot the performance of the GLRT GD (18) and the ASGD in partially homogeneous environment at $N = 8, K = 16$, and several values of L. In this case, we do not consider the AGD since it is no longer CFAR. We see that the one-step GLRT GD and the ASGD achieve approximately the same performance, but this is not true at $L > 1$, as can be shown by simulation for a properly reduced sample size. The AGD performance and its loss with respect to the GLRT GD (25) can still be read off Figs. 2 and 3 since the ASGD is invariant under scaling of the secondary data.

4.2 Targets with random parameters

We assess the performance of the AGD and ASGD when the $\alpha_l, l = 1, \ldots, L$ are the random variables. Obviously, the P_r is unaffected by the actual characterization of the α_l. Under the hypothesis H_1, the pdf of either statistics is independent of the characterization of the phases of the $\alpha_l, l = 1, \ldots, L$. Thus, should only the phases be random, the P_D would not change and hence, the curves of Figs. 2–4 would still be valid. If the amplitudes are random variables, due to the dependence of SNR (31) on the α_l, different statistical characterizations of the target can result in significantly different probabilities of detection. It is customary to model the $|\alpha_l|^2, l = 1, \ldots, L$ as chi-squared random variables. It would be interesting to evaluate the impact on the performance of a degree of correlation among the scattering centers of the target. To this end, we assume that the $|\alpha_l|^2, l = 1, \ldots, L$ are drawn from an exponentially correlated random sequence with one-lag correlation coefficient ρ. The procedure of generation of the $|\alpha_l|^2$ is discussed in 35 and we follow it. In Fig. 5, we analyze the influence of the fluctuation law at $N = 8, K = 16, L = 4, \rho = 0$ (i.e., $|\alpha_l|^2, l = 1, \ldots, L$ are independent of each other), the multiple dominant scattering target model 1 from Table 1 35, and n as a parameter. Any permutation of the positions of the scatterers among the cells under test does not influence the performance, also due to assumption that the $|\alpha_l|^2, l = 1, \ldots, L$ are independent random variables. The AGD performance (28) operating in a homogeneous environment is shown in Fig. 5. The performance depends on the actual multiple dominant scattering target model being in force. The P_D can be obtained by averaging (36) and (37) with respect to the SNR, respectively, and the distribution of the SNR (31) depends on the multiple dominant scattering target model. Figures 2–5 show that the fluctuation law significantly affects the performance only for high values of P_D in the medium/high range. In Fig. 6, we analyze the effect of correlation between the target amplitudes for the AGD (the dependences for the ASGD are little bit worse). We refer to $N=8, K=16, L=4$, Rayleigh-fluctuating amplitudes, the multiple dominant scattering target model 1 from Table 1 35, and several values of the one-lag correlation coefficient ρ. Figure 6 highlights that the correlation between the $|\alpha_l|^2, l = 1, \ldots, L$ is responsible for an additional loss. This behavior can be easily explained intuitively. In fact, when the received signals from target scatterers are significantly correlated, it may happen that all of them "fade at the same time" and this may cause missing of detection. We note that Figs. 2–6 highlight that the GLRT GD, the AGD, and the ASGD outperform the conventional GLRT detector 7,8,35.

5. CONCLUSIONS

In this paper, we have addressed the problem of adaptive detection of range-spread targets in homogeneous and partially homogeneous environment. We designed and assessed one-step and two-step GLRT GDs that possess CFAR properties. We have shown that the AGD and ASGD have the CFAR property under a homogeneous environment and the one-step
GLRT GD (18) and ASGD have the CFAR property under a partially homogeneous environment. As to computational complexity, we have shown that the two-step GLRT GD are faster to implement than the one-step one, and the amount of work required for their implementation grows linearly with L. As to the detection performance, we have derived the analytical dependence of P_D on the target and the noise parameters and estimated the P_D through Monte Carlo simulations. The cases of fluctuating and non-fluctuating targets are considered. We could find that: a) the GLRT GD do not suffer collapsing loss; b) the one-step GLRT GD (17) and AGD may have comparable performance under homogeneous disturbance at high values of L; c) the ASGD achieves the same performance of the one-step GLRT GD (18) in a partially homogeneous environment and has an acceptable loss with respect to the one-step GLRT GD (17) in a homogeneous disturbance. In the latter case, we have focused on the AGD and ASGD and have found that the fluctuation law of the target amplitudes strongly affects the detection probability for values of P_D in the medium/high range. We have evaluated the impact on the performance of a degree of correlation between the scattering centers of the target. We have found that the correlation is responsible of an additional loss which is relevant for values of P_D in the medium/high range. In conclusion we state that

- increasing in the radar resolution capabilities and suitably exploiting them can produce a significant detection gain;
- the modified GLRT GD is superior to the plain GLRT, as it leads to superior detection performance;
- the ASGD is somewhat more robust than the AGD in that it guarantees CFARness under both scenarios.

We still must assess the capability of the proposed receivers based on GASP in detecting slightly mismatched signals while rejecting unwanted signals, i.e. the side-lobe signals. This is a problem of primary concern in a surveillance system and is the object of current studies.

ACKNOWLEDGMENT

This research was supported by the Kyungpook National University Research Grant, 2009 and Industry-Academic Cooperation Foundation, Kyungpook National University and SL Light Corporation Joint Research Grant (the Grant No. 201014590000).

REFERENCES

Figure 1. Principal flowchart of GD.

Figure 2. P_o versus SNR of the GLRT GD (17), AGD, and ASGD in homogeneous environment at $N=8, K=16, P_E = 10^{-3}$, and L as a parameter.

Figure 3. P_o versus SNR of the GLRT GD (25), AGD, and ASGD in homogeneous environment at $N=8, L=16, P_E = 10^{-3}$, and K as a parameter.

Figure 4. P_o versus SNR of the GLRT GD (18), and ASGD in partially homogeneous environment at $N=8, K=16, P_E = 10^{-3}$, and L as a parameter.

Figure 5. P_o versus SNR of the AGD in homogeneous environment at $N=8, K=16, P_E = 10^{-4} L=4$, with chi-fluctuating amplitudes and m as a parameter.

Figure 6. P_o versus SNR of the AGD in homogeneous environment at $N=8, K=16, P_E = 10^{-4} L=4$, with correlated Rayleigh-distributed amplitudes and ρ as a parameter.