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Chapter 6

DETECTION OF SPATIALLY DISTRIBUTED SIGNALS
BY GENERALIZED RECEIVER USING RADAR SENSOR
ARRAYS IN WIRELESS COMMUNICATIONS

Vyacheslav TuzlukoV'
School of Electronics Engineering, College of IT Engineering,
Kyungpook National University, Daegu, South Korea

ABSTRACT

We consider a problem of detecting a random spatially distributed signal source by
an array of sensors based on the generalized approach to signal processing (GASP) in
noise. We derive some generalized receiver (GR) structures under several assumptions on
the available statistics. The GR performance is evaluated and the effect of source angular
spread is investigated. We notice the degrees of freedom of detection statistics
distributions depend on both the signal angular spread and the number of data snapshots.
At the high signal-to-noise ratio and with small degrees of freedom, increasing in angular
spread improves the detection performance. With large degrees of freedom the increasing
in angular spread reduces the detection performance. A comparison between GR and
conventional beamformer is carried out by computer simulations. The results indicate a

superiority of GR implementation as the angular spread becomes large over the
conventional beamformer detector.

1. INTRODUCTION

In the mgjority of cases, alarge class of modem array processing techniques has been de-
signed for point sources, i.e., spatially discrete sources of electromagnetic energy. In many
applications, the transmitter is best modelled as a distributed, rather than a point source. The
distributed sources appear to have certain angular spread with a mean direction of an'ival

Email: tuzlukov@ee.knu.ac.kr , Website: http://spl.knu.ac.kr



144 Vyacheslav Tuzlukov

(DOA) The point source model is only an approximation of the practical situation when there
is a large distance between the source and the receiver array.

The principal mechanism to make the source appear to be distributed in a space is diffuse
(irresolvable) and specular (resolvable) multipath caused by scattering of the propagation
waves. For example, experimental results obtained in urban wireless communications
reported significant angular scattering distributions due to local scattering and reflection from
mobile stations [1]-[3] and base stations [4], [5]. The characterization of the power azimuth

spectrum shows that angular spreads as large as25 have been observed. The amount of
angular spread is highly dependent on the scattering around the mobile, the height of the base
station, and the distance between the base station and the mobile station. Secondary, but
equally important, mechanism is transmitter motion. If the source moves significantly during
the observation interval or coherent integration time, it will appear to be distributed rather that
discrete.

The angular spread has a significant impact on any array processing algorithms [6], i.e.,
the signal-to-noise ratio (SNR) gain of the array is reduced as the angular spread is increased
[7], causing possible performance degradation. In passive array signal processing area, the
problems under study concern the extraction of information from measurements using an
array of radar sensors. Given the observations of the radar sensor outputs, the objective is to
estimate the unknown parameters associated with the waveforms or target return signals
corrupted by the noise.

We start with a simple and computationally efficient detection scheme. If the “noise
only” hypothesis is rejected, other algorithms are used to estimate the number of the spatially
distributed sources and their unknown parameters, such as radar range and bearing. Prior
work on distributed sources focuses primarily on source localization and DOA estimation
[8]-[11]. Estimation of the number of spatially distributed sources has also been studied in
(8].

Subspace detectors have been studied in [12], [13] for the cases where the spatially
distributed signal lies in a deterministic subspace. The case of detecting the Gaussian signals
with a low-rank covariance matrix and matched subspace detectors have been developed
based on the generalized likelihood ratio test (GLRT). In both cases, the subspace in which
the signals lie is assumed to be known. In other words, the dimension and rank of the signal
subspace are assumed to be known a priori. This assumption does not hold in practical
situations. The rank, orientation, and strength of the signal subspace vary along with the
signal angular spread, DOA, and the energy distribution function. In this case, the unknown
parameters may be estimated based on the maximum likelihood principle.

In the present paper, we develop the generalized receiver (GR) constructed based on the
generalized approach to signal processing (GASP) in noise [14]-[19] for spatially distributed
signal sources and study the GR performance depending on the angular spread. The idea to
employ the generalized receiver (GR) for the radar sensor array has been triggered by the
purpose to improve the detection performance of radar sensor systems at the low SNR. The
GR can be described as a combination of the optimal detector in the Neyman-Pearson (NP)
criterion sense and energy detector (ED) [14]-[16]. The main function of GR ED is to detect
a signal and the main function of the GR NP is to confirm a detection of the searched signal
and to define the detected signal parameters as discussed in detail in [16, Chapter 7, pp. 685—
692].
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A great difference between the GR ED and conventional ED is a presence of additional
linear system, for example, the bandpass filter, at the GR input. This bandpass filter can be
considered as the source of additional (reference) noise which does not contain the target ret-
urn signal from spatially distributed signal source. The GR allows us to formulate a decision
statistics about the target return signal presence or absence based on definition of the jointly
sufficient statistics of the mean and variance of the likelihood function [16, Chapter 3] while
the optimal detectors of classical and modern detection theories make a decision about the tar-
get return signal presence or absence based on definition of the mean of the likelihood
function, only, and the conventional ED employed by radar sensor array system defines a
decision statistics with respect to the target return signal presence or absence based on
determination of the variance of the likelihood function only.

Thus, an implementation of GR in radar sensor array systems allows us to extract more
information from the likelihood function and make a more accurate decision about the target
return signal presence or absence in comparison, for example, with the matched filter (MF) or
ED.

Theoretically, the GR can be applied to detect any target return signal, i.e., the signal with
known or unknown, deterministic or random parameters. The GR implementation in radar
and wireless communication is discussed in [19] and [20]-[25] and [19], respectively. The
signal detection performance improvement using GR in radar sensor system is investigated in
[26]-{31]. The first attempt to investigate the GR employment in cognitive radio (CR)
systems has been discussed in [32].

In the present chapter, we first look at the case of known parameters. In this case, the GR
can be approximated as a subspace beamformer. The detection performance depends on the
detection statistic distribution and the radar sensor SNR at the GR output. The degrees of
freedom (DOF) of the detection statistics are determined by the angular spread and the
number of data snapshots. If we fix the number of data snapshots, we show that increasing in
angular spread reduces the mean of the detection statistics that degrades the detection
performance, and at the same time reduces its variance improving the detection performance.

Within a certain range of DOF, the detection performance is improved with increasing in
the angular spread, up to a point, and then is degraded slowly. We consider the case when the
various parameters, such as the signal direction, angular spread, power, and noise power are
unknown. We derive the GLRT GR and evaluate its performance by computer simulation.
We demonstrate that the GLRT GR has a significant performance advantage compared with
conventional beamformers of modern detection theory as the angular spread becomes large.

The reminder of this chapter is organized as follows. Section 2 presents a brief
description of the general GR flowchart and the main functioning principles and decision
statistics obtained at the GR output. The main statements of signal model, the brief
description of signal subspace, and detection problem are delivered in Section 3. Several
types of the GR beamformers with various set of unknown parameters are discussed in
Section 4. Section 5 introduces the performance analysis when the parameters are known.
Numerical results obtained under simulation are presented and discussed in Section 6. Finally,
the conclusion remarks are made in Section 7.
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2. CONVENTIONAL GR

As we mentioned before, the GR is constructed in accordance with GASP in noise [14]-
[16]. The GASP introduces an additional noise source that does not carry any information
about the incoming target return signal with the purpose to improve the signal processing
system performance. This additional noise can be considered as the reference noise without
any information about the signal to be detected. The jointly sufficient statistics of the mean
and variance of the likelihood function is obtained under GASP employment, while the
classical and modern signal processing theories can deliver only a sufficient statistics of the
mean or variance of the likelihood function. Thus, GASP implementation allows us to obtain
more information about the target return signal incoming at the GR input. Owing to this fact,
the detectors constructed on the GASP technology are able to improve the signal detection
performance in comparison with other conventional detectors.

The GR consists of three channels (see Figure 1): the GR correlation detector channel
(GR CD) - the preliminary filter (PF), the multipliers 1 and 2, the model signal generator
(MSG); the GR energy detector (GR ED) channel — the PF, the additional filter (AF), the
multipliers 3 and 4, the summator 1; and the GR compensation channel (GR CC) - the
summators 2 and 3, the accumulator 1. The threshold apparatus (THRA) device defines the
GR threshold.

As we can see from Figure 1, there are two band-pass filters, i.e., the linear systems, at
the GR input, namely, the PF and AF. We assume for simplicity that these two filters or linear
systems have the same amplitude-frequency characteristics or impulse responses. The AF
central frequency is detuned relative to the PF central frequency. There is a need to note the
PF bandwidth is matched with the bandwidth of the radio channel or target return signal
band-width.

Additional Filter
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Figure 1. GD structure.

If the detuning value between the PF and AF central frequencies is more than 4 or 5 times
the target return signal bandwidth to be detected, Le., 4~ 5Af, , where Af, is the target return
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signal bandwidth, we can believe that the processes at the PF and AF outputs are uncorrelated
because the coefficient of correlation between them is negligible (not more than 0.05). This
fact was confirmed experimentally in [33] and [34]. Thus, the target return signal plus noise
can be appeared at the GR PF output and the noise only is appeared at the GR. AF output.

The stochastic processes at the AF and PF outputs present the input stochastic samples
from two independent frequency-time regions. If the discrete-time noise w,[k] at the PF and

AF inputs is Gaussian, the discrete-time noise ¢i[k] at the PF output is Gaussian and the
reference discrete-time noise n;[k] at the AF output is Gaussian, too, owing to the fact that

the PF and AF are the linear systems and we believe that these linear systems do not change
the statistical parameters of the input process. Thus, the AF can be considered as a generator
of the reference noise with a priori information a “no” target return signal (the reference noise
sample) [17, Chapter 5]. The noise at the PF and AF outputs can be presented in the following
form:

AT B 5o e
(1)
n;lk] = ZgAF[m]wi[k =ml.;

m=—o

where g, [m] and g 4r[m] are the impulse responses of the PF and AF, respectively.

In a general, under practical implementation of any detector in radar system with sensor
array, the bandwidth of the spectrum to be sensed is defined. Thus, the AF bandwidth and
central frequency can be assigned, too (the AF bandwidth can not be used by the target return
signal because it is out of its spectrum). The case when there are interfering signals within the
AF bandwidth, the action of this interference on the GR detection performance, and the case
of nonideal condition when the noise at the PF and AF outputs is not the same by statistical
parameters are discussed in [28].

Under the hypothesis 7 (“a yes” target return signal), the GR CD generates the signal

component s [k]s;[k] caused by interaction between the model signal s;°[k], the MSG
output, and the incoming target return signal s,[k], and the noise component s [k]&,[k] caused
by interaction between the model signal s/”[k]and the noise ¢i[k]at the PF output. GR ED

generates the signal energy s?[k] and the random component s, [£]&,[k] caused by interaction
between the target return signal s;[k]and the noise &[] at the PF output. The main purpose of
the GR CC is to cancel completely in the statistical sense the GR CD noise component
s/“[k]x ¢&[kland the GR ED random component s,[k]& [k] based on the same nature of the
noise &;[k]. The relation between the target return signal to be detected s;[k] and the model

signal s/ [k]is defined as:
A

P K=us[k] (2)

where 4 is the coefficient of proportionality.
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The main functioning condition under the GR employment in any signal processing
system including the radar sensor one is the equality between parameters of the model signal
s/"[k] and the incoming target return signals;[k], for example, by amplitude. Under this
condition it is possible to cancel completely in the statistical sense the noise component
s [k]x &;[k] of the GR CD and the random component s,[k]&[k] of the GR ED. Satisfying

the GR main functioning condition given by (2), s/[k]=s,[k], x=1, we are able to detect
the target return signal with the high probability of detection at the low SNR and define the
target return signal parameters with high accuracy. Practical realizations of this condition
require increasing in the complexity of GR structure and, consequently, lead us to increasing
in computation cost. For example, there is a need to employ the amplitude tracking system or
to use the off-line data samples processing. Under the hypothesis %, (““a no” target return

signal), satisfying the main GR functioning condition s/ [k]=s;[k] we obtain only the
background noise ryiz[k] —£2[k] at the GR output.

Under practical implementation, the real structure of GR depends on specificity of signal
processing systems and their applications, for example, the radar sensors systems, adaptive
communications systems, cognitive radio systems, satellite communication systems, mobile
communication systems and so on. In the present paper, the GR circuitry (Figure 1) is
demonstrated with the purpose to explain the main operational principles. Because of this, the
GR flowchart presented in Figure 1 should be considered under this viewpoint. Satisfying the

ma-in functioning condition s;"[k]=s,;[k] for GR, the ideal case, for radar sensor applications,
we are able to detect the target return signal with high probability of detection and define
accurately its parameters.

In the present chapter, we discuss the GR implementation in radar sensor array systems.
Since the presented GR test statistics is defined by the signal energy and noise power, see
Eqgs. (5) and (7), the equality between the model signal s/"[k] and the target return signal to be
detected s,[k], in particular by amplitude, is required that leads us to high circuitry

complexity in practice. For example, there is a need to implement the amplitude tracking
system or off-line data sample processing. Detailed discussion about the main GR functioning
principles if there is no a priori information about the target return signal and there is
uncertainty with respect to the target return signal parameters, i.e., the target return signal
parameters are random, can be found in [14] and [16, Chapter 6, pp.611-621 and Chapter 7,
pp. 631-695].

The complete matching between the model signal s/”[k] and the incoming target return
signal s;[k], for example, by amplitude is a very hard problem in practice because the
incoming target return signal s;[k] depends on both the fading and the transmitted signal and it

is impractical to estimate the fading gain at the low SNMR. This matching is possible in the
ideal case only. The GD detection performance will be deteriorated under mismatching in
parameters between the model signal s/ [£] and the incoming target return signal s,[k]and the
impact of this problem is discussed in [35], where a complete analysis about the violation of
the main GR functioning requirements is presented. The GR decision statistics requires an

estimation of the noise variance 0',? using the reference noise 7, [£] at the AF output.
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Under the hypothesis # , the signal at the PF output, see Figure 1, can be defined as

x;[k] = s;[k]1+ S [k] 3)
where &[k] is the noise at the PF output and

s;ilk]=hilk]s(k], C))

where [k] are the channel coefficients. Under the hypothesis #, and for all i and £, the
process x,[k]= £ [k] at the PF output is subjected to the complex Gaussian distribution and

can be considered as the independent and identically distributed (i.i.d.) process.

In ideal case, we can think that the signal at the AF output is the reference noise 7,[£]
with the same statistical parameters as the noise&[k]. In practice, there is a difference
between the statistical parameters of the noise 7,[k] and &;[k]. How this difference impacts
on the GR detection performance is discussed in detail in [16, Chapter 7, pp. 631-695].

The decision statistics at the GR output presented in [14] and [16, Chapter 3] is extended
for the case of antenna array when an adoption of multiple antennas and antenna arrays is

effective to mitigate the negative attenuation and fading effects. The GR decision statistics
can be presented in the following form:

NaAM : NAM NAM i
Ter(X) = XD 2x,[k1s/ (k] - > > x7[k]+ D> 7; [£] THRgg , (5)
k=0i=1 k=0i=1 k=0i=1 <
#
where
= [x(0),...x(NV =1)] (6)

is the vector of the random process at the PF output and THR is the GR detection threshold.
Under the hypotheses # and #, and when the amplitude of the incoming target return
signal is equal to the amplitude of the model signal, s/ [k] = s;[k] the GR decision statistics

Top(X) takes the following form, respectively:

N-1M = N-I1M 5 N-1M 5
N T (X)= 3 Y siTkl+ 2 Y mitkl- 3. 0 4 1K)
k=0i=1 k=0i=1 k=0i=1
o, (7)
#y Top(X) = ZZ’L ZZ i3
k=0i=1 k=0i=1

In (7) the term Z‘V__l e 2[k] E, corresponds to the average target return signal

energy, and the term Z Zl\ _1,; [k] is the background noise at the GR

Y ik
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output. The GR output background noise is a difference between the noise power at the PF
and AF outputs. Practical implementation of the GR decision statistics requires an estimation

of the noise variance 0',? using the reference noise 7,[k] at the AF output.

3. PROBLEM STATEMENT
3.1. Signal Model

Assume that we have an array with P sensors with an array response vectora(g), where
¢ denotes the azimuth. The array and all the sources are in the same plane. We assume a

narrowband model for all signals and all the signals are defined within the limits of baseband.
The signal received by the radar sensor array from a single source is modelled as

Xk:Sk+ék ,k:L...,N (8)

where N is the sample size and X; =[x, ,....x; ] is the array output at sample reading k; S, is

the signal received at the radar sensor array elements assumed to be complex Gaussian with
zero mean and covariance EgRg, where E; is the total signal energy and R is defined be-

low in (10); &, is the complex Gaussian noise with zero mean and covariance R . The signal

and noise are uncorrelated from sample to sample.
The correlation matrix of observation vector X, is given by

R, = E{X,. X} } = E;Rs(¢.8) + R, 9)

where (--))" denotes the complex conjugate transpose and the signal covariance matrix is
given by

R5(4.8) = [E©0:¢.p)a@)a" (6)d6 , (10)

where ¢ is the source azimuth angle and /S is the source angular spread with 0 < <27 ;

a(0) is the array manifold at the angle @ ; Rg(¢,5) is the normalized so that
Tr{Rs(g. )] =P (11)

Tr[--] denotes the trace of a matrix, E(&;¢, ) is the spatial energy distribution of source at

the azimuth ¢ . More specifically, we may assume that

E:9.5)=EO-¢,5) (12)
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with

TE(9;¢,ﬂ)d<9=1. (13)

=¥

The shape of the energy distribution function depends on the angular spread parameter /3 .

Iff=0,E(;4,p) is the unit pulse. Asfis increased, the energy distribution function

becomes wider. For simplicity, we consider the uniformly distributed source model, i.e.

1
—, 0 —-0.58, 0.5
Bag P s /] (14)

0, otherwise .

One can also consider a Gaussian type distribution such that

1 O-9)°
- =0 -0.58,0+0.5
E@:6.8)=] Jonp exp{ 25 } Sl O (15)

-, - - otherwise .

3.2. Signal Subspace

By performing an eigen-decomposition of the matrix R (g, 3) , we get

A 0 \vH
R (4,8)=VAVE =(v. V) " . 16
«0.5) AR AJ[V,,”) (16)
where
V-V V),
A =diag(A,,A,), (17)
A, =diag(4,...,4.)

Here A, consists of thel <r < P largest eigenvalues of R (¢, /3)in descending order and V,
=(Vy,...,v,) contains the corresponding orthonormal eigenvectors. If Rg(g, ) is the low-

rank matrix with rank 7, then

R5(#.8) =V, A, V. (18)
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More generally, we will assume that Rg(@,8) can be approximated by a rank » matrix.

The number of dominant eigenvalues may be defined as the minimum number of eigenvalues
whose sum exceeded 7P , where 0 <7 <1 is close to unity, for example, 7 =0.95. Thus,

Rs(#./) =V, A, V[ . (19)

The range space of V, is called the signal subspace and its orthogonal complement,
called the noise subspace, is spanned by V. . The effective rank of subspace is the number of

dominant eigenvalues. The case # = 0" corresponds to the point source where the rankr» = 1,

and the signal covariance becomes

R;(¢,0)=a(g)a” (¢). (20)

3.3. Detection Problem

The detection problem of a random Gaussian signal in the presence of noise and
interference can be presented in the following form:

# e e
_{ék—) 0 (21)

b bkl ek

Covariance matrix of array output under the hypotheses #, and # is R, =R;: and R,

given by (9)—(14), respectively.
Let us assume the interference has characteristics similar to that of the noise and can be
absorbed into the noise vectorg, . We assume that the noise at the GR PF output can be

2 . . . .
presented asR; = o1, where o: is the noise variance and the noise power under the

hypotheses #, and#, is not differed. If the noise is spatially coloured or R;

R.: is the known positive definite Hermitian matrix, the detection is preceded by the

= O'C%ng— where

prewhitening filter R;OS :
We have the binary hypotheses with X, being a whitened data vector. We assume that the

noise vectors {&,,...,& y } are i.i.d. By grouping all the N snapshots of observation vectors into
an observation matrix

X=x. %], (22)
we have

X=S+E, (23)
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where the signal matrix
S=[Sl,...,s‘v] (24)
and the noise matrix

==& 801 (25)

The detection statistics depends on a set of parameters

p=1{Es.0,B,0%} . (26)

If all parameters are known, this is a standard detection problem whose optimal solution
is the GR likelihood ratio [14]-[16]. If the parameters are unknown, we use the GLRT GR
involving the replacement of unknown parameters by their maximum likelihood estimates
under each hypothesis.

Some specific versions of GR can be constructed depending on what parameters are
known or unknown. We consider the GLRT GR in which the conventional beamformers are
the counterparts with the same set of unknown parameters so that a fair comparison between
the GLRT GR and conventional beamformer can be made.

We consider the following types:

e the GR beamformer type 1 — all the signal parameters are known and this GR is used
as a reference;

e the GLRT GR beamformer type 2 — the parameters ¢, 5 are unknown;
e the GLRT GR beamformer type 3 — the parameters E S,o‘,f ,0, B are unknown;

o the GR beamformer type 4 — the parameter ¢ is unknown;

e the GR beamformer type 5 — the parameters ¢,Es,o. are unknown.
We carry out a comparative analysis between the detectors of types 1, 2, 3, 4, and 5 with

the corresponding conventional beamformer. The conventional beamformer is designed

assuming the point sources (zero angular spread, i.e. 5=0").

4. GR: SPECIFIC MODIFICATIONS

According to the generalized approach to signal processing in noise [14]-[16], the
detection problem for the GR can be presented in the following form:

—)'?/ s k=1,...,N
S Sk 0 27
S, +&, % , k=1..,N,
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where the elements of the vectors £, and n, ., the reference noise at the GR AF output (see
Figure 1), are given by (1).

Assume, the target return signals under the hypotheses#| and #{are the complex
Gaussian with zero mean and covariance R, and R, , respectively, and the probability density
functions (pdfs) for N observations are given by

FX#) =[7" IRy | ] exp{~-NxT{R;'Q]} (28)
and
fX:#)=[7" |R; | xexp {-NxT1{R{'Q]}. (29)
here,
R R T CVRRRETRY R PRy
Q-Ng[xk][xk] = IXHIXH] (30)
and
N
@ = L YIXF K] = IX][x*] @y
k=1

are the sample covariance matrices under the hypotheses # and #,, respectively. We

emphasize that we do not impose the constraint that N > P, i.e., detection can be carried out
based on a single measurement (N =1)or multiple measurements(/N >1). Based on the

Neyman-Pears-on theorem, when all the parameters are known, the GR test is the logarithm
of the likelihood function ratio under the hypotheses # and #, . i.e.

2(X)= Tr{2s”[R61 -RyIX - [XH[RY -R7I[XH ) +[RG - R JQ N '“%l} ‘
1

(32)

Next, we consider the case when some parameters are unknown. The unknown
parameters under the hypotheses #, and #, are denoted by p,and p,, respectively. In this

case, the detection statistic is given by the GLRT [36]

oo max, f(XH)
UX, P, pr) = —L—— (33)
max, f(X,7)

or its logarithm
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X(X. po. 1) =Tr{ 28" [R;' (o) - R (b)IX™ ~[X* ][R (o) -R7 (p)I[X™ )"

don e ' . |R0(’EOH
+[R0 (pD)-Rl (pl)]Q +A‘[nm 5 (34)

where p, and p, are the parameters maximizing the likelihood function under the hypotheses

#, and #, , respectively.

4.1. Subspace GD Beamformer — Known Parameters

Ignoring the constant term N In

R ‘| in (32), we can write

X(X, p)=Tr| 25" BBYX" —[X" BB [X" " +BB"Q| , (35)
where
BB =R{'(p)-R{'(p) (36)

and p is defined in (26). The above decomposition of BB is possible becauseR;' —R;'is a

non-negative definite matrix. In general, B is the Pxr matrix, 1<r <P . The rank of B de-
pends on rank of the signal covariance matrix R . Utilizing (14) and (19), we obtain

R, = EgV,A VY +R,. (37)
Employing the matrix inversion lemma, we obtain

BleR =RV IEA ¥ RV TVIRS (38)
Hence, we can rewrite (36) as follows:

BBY « RV [E: A, + VIRV TIVER, (39)
and then, the subspace matrix is a Pxr matrix

-1
B= Ro =[b,.....b,] . (40)

JEs A+VFR;'V :

If the signal subspace is indeed low rank with rank 7, the approximation sign is replaced
by an equality sign. This leads to an interpretation of the GR as a bank of beamformers. We
emphasize, this subspace beamformer is an approximation to the true GR.
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In our case, the noise covariance matrix R = o'_fl that leads us to a simpler form

B~ :F _ (41)
4o 2 Y +Eg A
do,

We denote Z as an output matrix of beamformers

Z=B"X=({z,,...2x], (42)

where z, = B”x, .We will refer to this as a subspace beamformer to distinguish it from the

conventional beamformer, where b is a Px1 vector. The GR output statistics is given by

N
XX, p)=Tr2B 7 YY" + Q} =3 || 22,sf -z, 2 +[x}1[x}0]7 | (43)
=1

4.2. GLRT GR - Unknown Parameter p={¢,/.E;,c”}

4.2.1. The Parameter p = ¢, 3}
In this case, the unknown parameter p = {¢, S} needs to be estimated. Note that the
likelihood function of the GR background noise under the hypothesis #, is independent of the

signal S and its parameters p, and thus, it needs to be estimated only under the hypothesis % .
The detection statistics are constructed as follows by maximizing argument p:

X(X,ﬁ‘)
Hip-l -l #, # -1 “1,a #H -1 -1~ AT |R0(f’n)|
=Tr{28"[Ry —R7 (p]X™ ~[X™ ][R -R{ (2)][X™1” +[R5' -R{ (5)]Q'N Ianl(ﬁ?)l ’
1
(44)
where
p) =arg mec - X(X,p,). (45)

T ¢e(-0.57,0.57), B<(0, )

The estimation is done by a numerical maximization over the range-7<g¢<mor-0357<g<

0.57 (for a linear array), and0 < 8 < §,, 5, is the predetermined angular spread range.
The maximization is carried out by the following steps:
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e Stepl: We divide a two-dimensional search range {4, A} into small grids. The size of
the grid {3p,dB} is a fraction of an array beamwidth. We choose 38 = o, MB and & =
&, x MB where 0 < a;,a, <1. We find thate;, a, = 0.5 produce quite reliable results.

e Step 2: For every pair {g,, 8.},R(4,, B) is constructed based on (15).

e Step 3: The GR output statistic Z[X:(¢;.5,)] is evaluated.

e Step 4: This process is repeated, and the largest value of X[X;(¢,, )] is selected.

4.2.2. The Parameter p = {¢, B,E;.c. }

In this case, all the parameters are unknown. The maximum likelihood estimation
procedure requires a nonlinear optimization. The GR searches the global maximum of
likelihood function over the unknown parametric sets. The maximization can be carried out as
follows:

I(X,Es6;2.62.62, p) =maxI(X, E¢6;°,63.67,p,)=max max IR Ecazl 65,65, m).
P P pe(0,0)

(46)

We first maximize the likelihood function over (Eso;*,07%) , assuming that p =14, B} is
known. We maximize the result over{g, 3}. The derivation of the maximum likelihood

estimators of (Es,o; ) is provided at the fixed P
The GLRT GR likelihood function takes the following form:

R G gty i i ’ {Tr[Q]Tr[(ESc'r;': R ( pl)+l)]}P,\v .
| Es6,° Rg(p)+1|" Q
Taking the logarithm, we obtain the following statistics at the GR output
X(X,Es672,62,62,p,) = PNIn{ THQITAC 55&5 Rs(hy ””]} ~Nin|E6°Re(p,
(48)
b= max  X(X,Es6;%,63.65.p1) (49)

-0 Sr<g<0.5x.0<8<f,

In summary, the maximization is carried out as follows.

e Step I: Follow Steps 1 and 2 in Subsection 4.2.1.
Step 2: For each pair of {¢, 8.}, a one-dimensional search over p is carried out to

select the maximal value of X(X,!4,.3,)Esc,>) . The search can be implemented

through a binary search or an exhaustive search and p,is a predetermined search
range.
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e Step 3: This process is repeated for all the values of {g,, 5} and the largest value of
X(X, {4 B )Eso;?) is selected.

4.3. GR Beamformer— Unknown Parameter p={¢, E o’}

4.3.1. The Parameter p = (¢}

GR beamformer searches for the maximum energy by sweeping over all possible
directions. This is the optimal solution (maximum likelihood) for point sources. If the source
is distributed, only a fraction of the energy is captured by the beamformer. Degradation in
performance will occur.

For a linear array, the beamformer searches over—0.57<¢<0.57. The GR output

statistics takes the following form

Z(X) < 257BB” ($)X" - X*BBY[X*]? + BB Q| (50)
where
(ﬁzarg max || BH(gt’;)XH2 (51)
—0.5r<¢<0.57

anda(g@)is the steering vector pointing to directiong. The implementation of this GR
beamformer is quite straightforward. The GR beamformer B is a normalized steering vector.

The maximal value of GR beamformer output statistic is chosen by sweeping the GR
beamformer from —0.57t00.57 .

4.3.2. The Parameter p = {$,E¢, 0.}

The GR beamformer searches the maximum energy output over the range from — 0.5 to
0.57. The signal energy is divided by an estimate of the GR background noise variance that
is calculated by projecting GR array output on the subspace orthogonal to the rank 1 steering
vector. To exclude the signal power that “leaks™ through the beams adjacent to the main
beam, we estimate the GR background noise power from beams that are further away from
the main beam.

We can choose to exclude the 3,/ MB beams adjacent to the main beam, where f, is a
predetermined angular spread range. This seemingly ad hoc approach is the modified
maximum likelihood estimate of the GR background noise variance. It is well known that the
GR background noise variance estimate is given by [17], [19]

o, =||PAQ'||* (P-ry), (52)

where P; is the projection on the signal subspace A and r, is the signal subspace rank.
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The accuracy of the GR background noise estimate will degrade when a smaller subspace
is used due to a leakage of the signal power onto the noise subspace. We construct a subspace
C < A so that the signal power is excluded from the estimation i.e., the subspace

Clg. ) = a9~ 0.55,),....a(¢+0.55,)} (33)

is generated. The power projected onto the null space of C(g, ,) is considered to be the GR
background noise power, i.e.

G5(8,89) =Tr{Pgi, 5, Q}(P-1rg)™"; (54)

1 :
Paism) =1-Paigp); (55)

where .. is the rank of C.

The GR output statistic possessing CFAR properties is given by

1 # 1 H r
X(X)= max Tr{stP"Wlx” =X 'Paw)(xﬁ) +Pai¢)Q}

= (56)
#=(~0.57,0.57) o.(8.5,)

where P, is the projection matrix ona(¢). The implementation of this GR type involves

three steps.

® Step I: For every angleg, we construct a projection matrix P,4 - The subspace
C(¢, 5,) and null projection matrix Py, ¢.4) are constructed accordingly.

¢ Step 2: The GR output is evaluated based on (54) for every angle ¢ .

* Step 3: The largest value of (X, {g,,3}p) is selected.

S. PERFORMANCE ANALYSIS: KNOWN PARAMETERS

5.1. SNR Gain Versus Angular Spread

The SNR gain is defined as the ratio of the SNR at the radar sensor array GR output to the
SNR at the radar sensor array GR input. For point sources, SNR gain depends on the number
of sensors. For a linear array with P sensors SNR gain is equal to P. We derive SNR gain for
the subspace beamformers. The subspace GR beamformer output takes the following form:

%, =25"BR 3]} -x; BB (x)# +n,BB ¥ . (57)

Let the GR output SNR can be presented as the ratio between the average signal and
average background noise powers at the beamformer output
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Tr{B"E[S,S; 1B} _ Tr{E;B”RsB} _Es b Tr{E;B”RB}

SNRop' = = =— . (58)
R Tr(B"E[QB}  Tr{B'R.RYB} o} Tr(B”’R.RYB}
The GR input SNR is defined as Eg /o> . The SNR gain is given by
out H
SNRGi _ Tr{EsB"RB} (59)

SNR™, Tr{B”B}

We are interested in how the SNR gain of the subspace GR beamformer is varied with the
signal angular spread. Note that

BB” =025 1[40I+ EsR5(B)] " =V, {0256 1-[4021+ EsA, |}V =V, DV |

(60)
where
D=0250,"T1-[401+EcA, ] . (61)
Then, the SNR gain is defined as
t > A1+ SNRx A,
SNRGx _Tr{iDA,} o 62)

SNRgy  TriDj 3 All+SNRx AT

i=l

For simplicity, we assume that the dominant eigenvalues are approximately equal, i.e.,
A; =P/r, i=1,...,r. This approximation is certainly not very accurate, but it reveals some

insights of the SNR gain behaviour. Therefore, we obtain
SNES P

SNRE, 4t o

This result shows that the SNR gain for the subspace GR beamformer not only depends
on the number of sensors P but on the source angular spread S through the subspace rank r as

well. It is a monotone decreasing function of ». The following can be concluded as two
special cases:

e In the point source case S =0 or Rg = aa” | we get the SNR gain equal to P;

e Inthecase =180 orRg =1, we get the unit SNR gain.
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5.2. Receiver Operating Characteristics (ROC)

We derive the analytical expression for pdfs under two hypotheses #, and %, . By 77,1z}
and f,,(z) we denote the central Chi-squared distribution with M degrees of freedom and the

pdf of the central Chi-squared distribution with M degrees of freedom, respectively. Log-
likelihood ratios at the hypotheses #, and # can be represented by sum of quadratic forms =

complex Gaussian random variables

X(X,%,)=BB"Q - X}, BB"X,, = Zq,, Rilg,~ ngng‘gk
k=1

:
‘Z[ZA IV; TIH Z’lﬂ"fék I'}; &2)
k=11"7=1 J=1
Z(X,#)=28"RsX,, +BB"Q -XBB"X,,

N

N N
Z ¥ Ry -RHS, + Y 0 Ri'm, - D el Rz,

k=1 k=1 k=1

- H

ZZ/Ile I +Zilv q”—ZiIV - 65)
k=1| j=I

where 4, are nonzero eigenvalues of the matrix BB” and v ; are the associated eigenvectors

Thus, we can write

W
XXH)=3> 7l zju [y i=0,1 (66)

k=1 j=1

where z, are independent zero mean and unit variance complex Gaussian random variables

and {y,,j=1,...,r} are the r real nonzero weights. More precisely,

jo = ES/?'](ES/{] + 40';)_],
7ji =0.25E5A,03", (67)
J=1r

where 4, are the eigenvalues of R .

As an extension of the results in [37] and [38] from real to complex numbers. the
quadratic form X(X.#) is distributed approximately as the scaled Chi-squared random

variable, or X(X,%,) ~ 4, ;g,f,i , where the scaling factor &, and the degrees of freedom Af are
given by
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iiﬁ, {ii?’n}
o,

Byt = et W (68)
ZO‘Z];V@? 227
= J'=

i=0 j=I

Plugging (67) into (68), we obtain

2
Er: SNR"A, : i SNR"Z,
T SNR"), +402 = swz’") +40?
50="——,M0=2 a7 e o e (69)
i SNR" A, r SR, i
j=1 SNR"4,+4a; E SNR" A +40?
in p rpl
R T e e e (70)
40' P j=1 L in
il Z g_}

Utilizing the Jacobean transformation, we can show that the pdf of detection statistics
X(X,#) is defined by |5, | 7, M; (z,67") . Note that the absolute sign can be ignored because

J, is a positive number. This leads to an approximation of the probability of false alarm

Py = [ fu, () (71)
Kg

and the probability of detection
Pp=  [fu(2)dz, (72)
(6,/6)Kg
where the pdf is given by
frg, (@) = 05" M (0.5M)] ' u**¥i™ exp{-0.5u} .

(73)
Let

Fy @)= [ fu(2)dz (74)
0
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is the probability distribution function of Chi-squared random variable with M degrees of
freedom and F:{,'(u) is the inverse probability distribution function.
The probability of false alarm P, and the probability of detection P, of quadratic form
K(X,#) can be written as
{ Fry = I‘FMO (,H); (75)
Pp = 1= Fy, (Su/d)).

For a fixed level of false alarm rate, we have a closed-form expression of the probability
of detection

Pp =1-Fy [6oFy (1= Pey) /8] . (76)

Computer simulation demonstrates that the analytical result (the lines) is matched with
the Monte Carlo simulation result (the markers) quite well for different number of
measurements, signal angular spreads, and false alarm rates. The asymptotic performance of
the probability of detection P, as N is sufficiently large can also be obtained based on the

fact that the Chi-squared pdf with M degrees of freedom tends to approach a Gaussian normal
pdf with mean M and variance 20/ . If M is sufficiently great in magnitude

Fyr () — ¥lu—-M2M)™], (77)
where

W) = [ @7)7" exp {=0.5u% b . (78)
We obtain

%"-[MO +2M, ¥ (1 - PE{)]— M,

Py =1-9{-1 — e (79)
1

5.3. Required SNR (RSNR)

The ROC describes behaviour of the probability of detection P, as a function of the SNR
that changes the given probability of false alarm P;, . To compare different GR performance

it is sometimes convenient to define a scalar performance measure, rather than to use the
entire ROC curve.
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We define the RSNR as the SNR needed to produce the probability of target detection at a
given false alarm rate. Another quantity of interest is the GR output SNR required to achieve
the same target probability of detection P, for the fixed probability of false alarm P, . From

(69) and (70) we obtain

F Q-p
LS L (80)
S Fy,(1-Pp)
Simplification leads us to
{i SNR"2, }-
~ SNR"} +4c? Fl{i-P

RSNR = rP x A — “’fl( F4) (81)

b3 2 i SNR"A, Fy,(1-Fp)

i L SNR",+40]

The general behaviour of the quantity RSNR depends on eigenvalues, which has certain
distributions [38]. Equation (77) is quite complicated. To gain some insights of this quantity,
we look at the case where all the principal eigenvalues of R are approximately equal, i.e.,
A; =A=P/r,i=1,...,r. This approximation is certainly not accurate but serves for simplicity

purposes to illustrate the performance of RSNR as the degrees of freedom changes. A more
accurate result may be obtained by a numerical approach. With this assumption, we have
My= 2Nr,M;=2Nr. Letv=2Nr denotes the degrees of freedom, and after some

transformations, we obtain

v Fli=Pg)

RSNR = 2 x (82)
2P Fl=P)-1
and the quantity RSNR is given as
out Ly
rvr=2%at | 5. By (=Fp) (83)

SRS Ea=B)et

The quantity RSNR that is a function of (v, P, Px,) can be easily evaluated by numerical
method. For the fixed probability of false alarm P, , Figure 2 depicts the RSNR for different
values of degrees of freedom v and the probability of detection P, .
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Figure 2. Normalized RSNR versus degrees of freedom v & [1,50] at various P, ; Py, =107

To eliminate the effect of size of the linear array, we multiply the RSNR by array size P.
It is easy to see that the normalized RSNR, e.g. Px RSNR is a quantity that depends on the
degrees of freedom v, the probability of detection P, , and the probability of false alarm Py, .
This observation indicates that although the increase of the angular spread causes a reduction

of the SNR gain, it changes the distribution of the detection statistics by increasing its degrees
of freedom.

1.0 Fo t 2 N=XN 2 2. ¥=1 3
- :%_giﬁ‘l
0.9} >
0.8
1- =0
0.7
-~ =3
L Py, =0.001
0.5
0.4 & Theoretical
b, ] Monte Carlo
0.3 &
0.2 GLRT GD
"""""" Caonventional
0.1
SINR (dB
0.0 - (> )

25 20 15 S0 = 0 5

Figure 3. P, versus SNR; all parameters are known; the number of sensors P = 20.
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Figure 2 also explains the different behaviour of detection performance presented in
Figures 3 and 4. The GR operating in a meaningful detection range requires a great in
magnitude the target probability of detection P, . In this case, the RSNR performance

improves as the degrees of freedom increase to a certain point, and then, it starts dropping.
Large N or large angular spread gives rise to an asymptotic performance of the RSNR. As the
degrees of freedom become great in magnitude, either due to a large number of measurements

or large angular spread, the detection performance degrades, but the degradation is not
significant.

6. NUMERICAL RESULTS

We present computer simulations to illustrate the analytical performance results
discussed above. We consider a uniform linear array with P sensors and half wavelength
spacing. The array manifold is given by

T
D R P-1) -
J<Edsing J——dsing
a(g)=|1e * henl - 5 ’ .
A
Theoretical
° Monte Cario
a
S
= GLRT GD
3 _______ Conventional
Z
“

R TR TR R R N (i
Angular spread in bemnwidth (degree)

Figure 4. SNR gain versus normalized angular spread for an array with P = 20 sensors.

where 4 is the target return signal wavelength,d =0.54 is the element spacing, and ¢ is the
azimuth angle. We find that is convenient to normalize the angular spread by the array beam
width [39]. We assign P =20 . Thus, the beam width of this linear array is equal t0 6.03° . We
assume that the source is located at 20" relative to the broadside of the array. Throughout the

simulation, the probability of false alarm P, =10~ and the probability of detection 2, = 0.8.
D
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We are interested in the case if there are a few snapshots available for detection. In the
simulation, we investigate the cases where N=1and N =20, respectively. More detailed
discussion about detection by multiple measurements can be found in [40].

6.1. Parameters are Known — ROC, RSNVR, and SNR Gain

Figure 3 depicts the probability of detection P, for different values of angular spreads j3 ,
the probability of false alarm Py, , and the number of measurements N. We can see both the

analytical results using the formulas presented earlier and the Monte Carlo trial results. We
note that there exists a very good match between two sets of results. We notice that the
behaviour of the probability of detection P, curves is quite different when multiple

measurements are used in comparison with that of the single measurement detection. For a
single measurement N =1there is a crossover point of ROC curves for different angular

spreads. We observe that as the angular spread increases from0 to30°, the detection
performance improves up to a point, and then, it starts decreasing. If multiple measurements
are used, the detection performance drops as the angular spread increases. This phenomenon
is due to the change of the pdf shape, whose degrees of freedom are affected by both the
angular spread and the number of measurements. Alternative way to look this phenomenon is
to investigate the RSNR as a function of the angular spread. Figure 3 demonstrates a
superiority of GLRT GR employment in comparison with the conventional beamformer.
Figure 4 shows the behaviour of the SNR gain as a function of the angular spread. The
SNR gain plot decreases monotonically from 17 to 5 dB as the angular spread increases from

B =0"to=360". The GR output RSNR demonstrates a performance improvement caused

by the GR output statistics pdf change as the angular spread increases. As the angular spread
and the effective rank of the GR subspace increases, the detection statistics pdf becomes a
Gaussian distribution. Once the pdf is sufficiently close to Gaussian one, no more
improvement occurs. The RSNR plot, which is the difference of these two plots, is decreased
up to a point and increased afterwards.

6.2. Detection with Angular Spread Mismatch

We examine the effects of angular spread mismatch on GR performance. In Figure 5, the
upper plot depicts the SNR gain loss factor defined as the ratio of the SNR gain for a subspace
GR beamformer using an incorrect angular spread to that of a beamformer that uses the

correct angular spread of 20" . This is due to the fact that the GR background noise power
projected on the detector subspace is proportional to the effective rank of subspace that
increases with the assumed angular spread. The lower plot depicts RSNR loss factor as the
assumed angular spread changes. GR with the correct angular spread has the best
performance. The conventional beamformer detector assumed a zero angular spread and
experienced a loss of approximately 7 dB in this case.
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Figure 5. RSNR and SNR gain loss factor versus assumed angular spread when there is an angular
mismatch; the number of sensors P = 20 the angular spread 8 = 20° .

6.3. Detection Performance as a Function of Angular Spread

At the fixed probability of false alarm Py, =10~ we study the probability of detection P, .
GLRT GR detector searches over ranges of direction¢ and angular spread S the maximal

value of likelihood function. Searching is carried out over the range —90 <@ <90 and0<

B < B, ., where £, is set to be 60" .
Figures 6 and 7 depict the probability of detection P, and RSNR versus angular spread for

different detectors with single measurement, i.e., N=1. The results show that when the
angular spread is small there is a little difference between the GLRT GR and GR beamformer
because the source is appeared to be a point-like source. The main beam of the GR
beamformer is able to capture all the energy coming from the source. Actually, the GLRT GR
has slightly worse performance than that of the GR beamformer due to the excessive search
which results in an increase of detection threshold. As the angular spread gets larger, the
performance of both GLRT GR and GR beamformer degrades. The degradation of GR
beamformer is much more significant than that of GLRT GR. In the case of large angular
spread the GLRT GR demonstrates the better probability of detection P, in comparison with

the GR beamformer.
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Figure 6. P, versus normalized angular spread; the number of measurement is N =1, SNR = 2dB,
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We plot the results in the case of known parameters to see how much the detection
performance degrades than occurs for other suboptimal detectors. We study the GR
performance when multiple measurements NV =20 are used. We compare the probability of
detection P, and RSNR when the parameters are unknown (see subsections 4.2 and 4.3) at

N =20data snap-shots.

1 - GLRT (all parameters are known)

2 - GLRT( #and B are unknown)
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5 - beamformer (¢, Esand O are unknown)

Theoretical 2

10 3 -
GD o Monte Carlo _o

L ——-—— Conventional

-GT\G\e- e e T

0 2 4 6 8 10 12 14
Angular spread in beamwidth ( degree )

Figure 7. RSNR versus normalized angular spread; the number of measurement is N =1, P, =0.8,

P, =107
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Figure 9. RSNR versus normalized angular spread; the number of measurements is N = 20, P, =

0.8, P =107

We see that the detection performance is appeared to be quite different than at N =1. If
N =20, as the angular spread increases, the detection performance degrades monotonically.
This observation suggests that large degrees of freedom caused either by multiple
measurements or by a large angular spread, bring down the detection performance. The GR
beamformer detection performance degrades faster in comparison with GLRT GR one.
Simulation results in Figures 8 and 9 also demonstrate the better GLRT GR and GR
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beamformer performance in comparison with conventional beamformers as the angular
spread increases.

CONCLUSION

In this chapter, we studied the GLRT GR and GR beamformer for spatially distributed si-
gnal sources. The analysis and computer simulation demonstrate that the GR performance is
better in comparison with conventional beamformer one that are designed for point sources.
The performance difference increases as angular spread increases.

ACKNOWLEDGMENTS

This research was supported by Industry-Academic Cooperation Foundation, Kyungpook
National University and SL Light Corporation Joint Research Grant (the Grant No.
201014590000) and the Kyungpook National University Research Grant, 2013.

REFERENCES

[1] Adachi, F., Freeney, M.T., Williamson, A.G., and D. Parson, “Cross correlation
between the envelopes of 900 MHz signals received at a mobile radio base station site,”
in Proceedings of Institute of Electrical Engineers F, 1991, Vol. 133, No. 6, pp. 506—
512.

[2] Ikegami, F. and S. Yoshida, “Analysis of multipath propagation structure in urban
mobile radio environments,” IEEE Transactions on Antenna Propagation, 1980, Vol.
AP-28, No. 7, pp. 531-537.

[3] Lee, W. C.-Y., “Finding the approximate angular probability density function of wave
arrival by using a directional antenna,” IEEE Transactions on Antenna Propagation,
1973, Vol. AP-21, No. 5, pp. 328-334.

[4] Eggers, P., “Angular propagation descriptions relevant for base station adaptive antenna
operations,” Wireless Personal Communications, 1999, Vol. 11, No. 10, pp. 3-29.

[5] Pedersen, K.I, Mogensen, P.E., and B.H. Fleury, “Power azimuth spectrum in outdoor
environments, " Electronics Letters, 1997, Vol. 33, No. 8, pp. 1583-1584.

[6] Salz, J. and J.H. Winters, “Effect of fading correlation on adaptive arrays in digital
mobile radio,” IEEE Transactions on Vehicle Technologies, 1994, Vol. 43, No. 11, pp.
1049-1057.

[7] Friedlander, B. and Y. Jin, “Adaptive array processing for distributed sources,” in
Proceedings 35" Asilomar Conference on Signals, Systems,Computers, November
2001.

[8] Abramovich, Yu., Spencer, N., and A. Gorohov, “Detection-estimation of distributed
Gaussian sources,” in Proceedings Sensor Array Multichannel Signal Processing
Workshop, 2002, pp. 513-517.



172

Vyacheslav Tuzlukov

9]

(10]

(11]

[23]

(24]

[25]

(26]

Besson, O. and P. Stoica, “Decoupled estimation of DOA and angular spread for a
spatially distributed source,” IEEE Transactions on Signal Processing, 2000, Vol. 48,
No. 7, pp.1872—1882.

Raich, R., Goldberg, I., and H. Messer, “Bearing estimation for a distributed source:
Modelling, inherent accuracy limitations and algorithm,” IEEE Transactions on Signal
Processing, 2000, Vol. 48, No. 2, pp.429-441.

Valaee, S., Champagne, B., and P. Kabal,“Parametric localization of distributed
sources,” IEEE Transactions on Signal Processing, 1995, Vol. 43, No. 9, pp. 2144-
2153"

Raghavan, R.S., Pulsone, N., and D.J. McLauhlin, “Performance of the GLRT for
adaptive vector subspace detection,” IEEE Transactions on Aerospace Electronics
Systems, 1996, Vol. 32, No. 10, pp.1473-1487.

Scharf, L.L. and B. Friedlander, “Matched subspace detection,” IEEE Transactions on
Signal Processing, 1994, Vol. 42, No. 8, pp. 2146-2157.

Tuzlukov, V.P., “A new approach to signal detection theory,” Digital Signal
Processing, 1998, Vol. 8, No. 3, pp. 166—184.

Tuzlukov, V.P., Signal Processing in Noise: A New Methodology. Minsk: IEC, 1998.
Tuzlukov, V.P., Signal Detection Theory. New York: Springer-Verlag, 2001

Tuzlukov, V.P., Signal Processing Noise. Boca Raton, London, New York, Washington
D.C.: CRC Press, Taylor & Francis Group, 2002.

Tuzlukov, V.P., Signal and Image Processing in Navigational Systems. Boca Raton,
London, New York, Washington D.C.: CRC Press, Taylor & Francis Group, 2005.
Tuzlukov, V.P., Signal Processing in Radar Systems. Boca Raton, London, New York,
Washington D.C. CRC Press, Taylor & Francis Group, 2012.

Tuzlukov, V.P.,"DS-CDMA downlink systems with fading channel employing the
generalized receiver,” Digital Signal Processing, 2011, Vol. 21, No. 6, pp. 725-733.
[21] Tuzlukov, V.P., "Signal processing by generalized receiver in DS-CDMA wireless
communication systems with frequency-selective channels,” Circuits, Systems, and
Signal Processing, 2011,Vol. 30, No. 6, pp.1197-1230.

Tuzlukov, V.P., "Signal processing by generalized receiver in DS-CDMA wireless
communication systems with optimal combining and partial cancellation,” EURASIP
Journal on Advances in Signal Processing, Vol. 2011, Article ID 913189, 15 pages,
2011, doi:10.1155/2011/913189.

Tuzlukov, V.P. “Generalized approach to signal processing in wireless
communications: the main aspects and some examples,” Ch. 1l in Wireless
Communications and Networks: Recent Advances. Editor: Eksim Ali, InTech, Croatia,
2012, pp. 305-338.

Tuzlukov, V.P., “Wireless communications: generalized approach to signal
processing,” Ch. 6 in Communication Systems: New Research. Editor: Vyacheslav
Tuzlukov, NOVA Science Publisher, Inc., New York, USA, 2013, pp. 175-268.
Tuzlukov, V.P., “Signal processing by generalized receiver in DS-CDMA wireless
communication Systems,” Ch. 4 in Countemporary Issues in Wireless Communications.
Editor: Mutamed Khatib, InTech, Croatia, 2014, pp. 79-158.

Shbat, M.S. and V.P. Tuzlukov, “Radar sensor detectors for vehicle safety systems,”
Ch. 1 in Autonomous Hybrid Vehicles: Intelligent Transport Systems and Automotive



Detection of Spatially Distributed Signals ... 173

[38]

[39]
[40]

Technologies. Editors: Nicu Bizon, Lucian Dascalescu, and Naser Tabatabaei,
Publishing House, University of Pitesti, Romania, 2013, pp. 1-27.

Shbat, M.S. and V.P. Tuzlukov, “Radar sensor detectors for vehicle safety systems,”
Ch.1 in Autonomous Vehicles: Intelligent Transport Systems and Smart Technologies.
Editors: Nicu Bizon, Lucian Dascalescu, and Naser Tabatabaei, Nova Science
Publishers, Inc., New York, 2014, pp. 3-56.

Shbat, M.S. and V.P. Tuzlukov,”Evaluation of detection performance under
employment of generalized detector in radar sensor systems,” Radioengineering, 2014,
Vol. 23, No. 1, pp. 50-65.

Shbat, M.S. and V.P. Tuzlukov, “Generalized detector with adaptive detection thresh-
old for radar sensors,” in Proc. International Radar Symposium (IRS 2012), Warsaw,
Poland, 2012, pp. 91-94.

Shbat, M.S. and V.P. Tuzlukov, "Noise power estimation under generalized detector
employment in automotive detection and tracking systems,” in Proc. 9th IET Data
Fusion and Target Tracking Conf. (DF&TT'12), London, UK, 2012, doi: 10.1049/cp.
2012.0416.

Shbat, M.S. and V.P. Tuzlukov, “Definition of adaptive detection threshold under
employment of the generalized detector in radar sensor systems,” IET Signal
Processing, 2014, Vol. 8, Issue 6, pp. 622-632.

Shbat, M.S. and V.P. Tuzlukov, “Spectrum sensing under correlated antenna array
using generalized detector in cognitive radio systems,” International Journal of
Antennas and Propagation, vol. 2013, Article ID 853746, 8 pages, 2013,
doi:10.1155/2013/ 853746.

Maximov, M., “Joint correlation of fluctuative noise at outputs of frequency filters,”
Radio Engineering, No. 9, 1956, pp.28-38.

Chernyak, Yu. “Joint correlation of noise voltage at outputs of amplifiers with
nonoverlapping responses,” Radio Physics and Electronics, No. 4, 1960, pp. 551-561.
Shbat, M.S. “Performance analysis of signal detection by GD in radar sensor and
cognitive radio systems,” Kyungpook National University, PhD Thesis, 131 p.,
December 2013.

Lehmann, E., Testing Statistical Hypotheses, 2™ Ed. New York: Wiley-Interscience,
1986.

Box, G.E.P., “Some theorems on quadratic forms applied in the study of analysis of
variance problems, I. Effect of inequality of variance in the one-way classification,”
Annual Mathematical Statistics, 1954, Vol.25, No. 2, pp. 290-302.

Lee, H.B., “Eigenvalues and eigenvectors of covariance matrices for signals closely
spaced in frequency,” IEEE Transactions on Signal Processing, 1992, Vol. SP-40, No.
10, pp. 2518-2535.

Ma, M.T., Theory and Application of Antenna Array, New York: Wiley, 1974.
Helstrom, C.W., Statistical Theory of Signal Detection, 2" Ed. New York: Pergamon,
1968.




