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Abstract—We investigate the generalized receiver (GR) constructed 
based on the generalized approach to signal processing in noise empl-
oying non-blind beamforming algorithms and direction of arrival 
(DOA) estimation, which is implemented by MIMO wireless comm-
unication systems. Three non-blind beamforming algorithms, namely, 
the least mean square (LMS), the recursive least square (RLS) and 
the sample matrix inverse (SMI) are compared under employment by 
GR. DOA estimation techniques are applied based on multiple signal 
classification (MUSIC) and estimation of signal parameters via rotati-
onal invariance technique (ESPRIT). We suppose several GR structu-
res employing the above mentioned non-blind beamforming algor-
ithms jointly with DOA estimation procedure. Comparative analysis 
of simulation results allows us to conclude that the performance cur-
ves of GR with considered non-blind beamforming algorithms are 
very close to each other. Also, simulation results demonstrate superi-
ority in the output signal-to-interference-plus-noise ratio (SINR) un-
der employment of GR with the discussed non-blind beamforming 
algorithms and DOA estimation in MIMO wireless communication 
systems in comparison with the Neyman-Pearson detector. 
 

I. INTRODUCTION 
ITH the large demand for high data rate applications 
and improved signal quality over wireless channels ma-
ny investigations have been carried out to satisfy the re-

quirements of future wireless communication systems [1], [2]. 
One solution to these problems resides in the use of multiple 
antennas at the transmitter and/or receiver sides referred as the 
multiple-input multiple-output (MIMO) wireless communica-
tion systems. Many proposals within the framework of MIMO 
wireless communication systems have been introduced to imp-
rove the received signal quality and increase the high data rate 
over wireless links. 
   From the viewpoint of signal quality, it is known that the re-
ception of multiple copies of the transmitted data based on 
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employment of multiple antenna wireless communication sys-
tems improves the wireless communication system performan-
ce in comparison with the use of single antenna wireless com-
munication systems. From viewpoint of channel capacity, it 
has been demonstrated that the use of multiple antennas has a 
great potential to increase substantially the data transmission 
rate converting wireless communication system channels from 
narrow to wide data pipes. 
   The problem of beamforming and direction of arrival (DOA) 
of the information signal is a very important problem in the 
MIMO wireless communication systems. In practice, the bea-
mforming techniques are needed to eliminate effects of inter-
ference on MIMO wireless communication system performan-
ce. Adaptive beamforming is the mainstream technique for in-
terference elimination by defining dynamically the optimal 
weight vectors of array antenna elements. Filtering procedures 
are not able to distinguish the desired signal in the noise and 
interference if they occupy the same frequency bandwidth.  
   The sources of desired and interfering signals are usually di-
ffered by spatial locations. The spatial separation can be exp-
loited to distinguish a desired signal in the background of inte-
rfering signals using beamforming as a spatial filtering appro-
ach [3]. Beamforming is a versatile approach for wireless co-
mmunications that is usually applied in antenna array systems 
for spatial filtering to separate signals having overlapping fre-
quency content but originated from difference spatial locati-
ons. Adaptive beamforming is implemented in the case when 
the signal spatial locations are variable. Beamforming is emp-
loyed using different algorithms with the purpose to change 
the weight vectors adaptively with respect to each antenna ar-
ray element. 
   Adaptive beamforming algorithms can be categorized as the 
non-blind and blind algorithms depending on whether the refe-
rence signal is used or not. The non-blind beamforming algor-
ithms update the weight vectors of antenna array to form a de-
sired direction vector based on information about the informa-
tion and reference signals. The least mean square (LMS), the 
recursive least square (RLS), and the sample matrix inverse 
(SMI) algorithms are categorized as the non-blind beamform-
ing algorithms. The constant modulus algorithm (CMA), the 
spectral self-coherence restoral (SCORE), and the decision di-
rected (DD) algorithms are examples of the blind beamform-
ing algorithms. 
   Based on a priori knowledge about the information signal 
the non-blind beamforming algorithms can update the optimal 
weight vector with high accuracy. Therefore, the non-blind be-
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amforming technique attracts extensive research [4],[5]. When 
a priori knowledge about the direction of arrival (DOA) of the 
information signal is absent the non-blind beamforming tech-
nique is not valid unless the DOA estimation technique is app-
lied. The main idea of DOA estimation technique is to exploit 
the spatial information in the data received by the antenna ar-
ray. The beamforming based on the DOA estimation is a spe-
cial approach to blind beamforming algorithms. 
   A great number of DOA estimation algorithms have been 
developed and categorized into two methods, namely, the con-
ventional and subspace methods. The conventional method ca-
lculates a spatial spectrum and estimates DOAs by local maxi-
ma of the spectrum. Examples of this approach are the Bartlett 
and Capon methods [6]. However these methods suffer from 
lack of angular resolution. Therefore, the high angular resolu-
tion subspace methods such as the multiple signal classificati-
on (MUSIC) and the estimation of signal parameters via rota-
tional invariance technique (ESPRIT) are widely used [7]. 
   The generalized receiver (GR) has been constructed based 
on the generalized approach to signal processing (GASP) in 
noise and discussed in numerous journal and conference pa-
pers and some monographs, namely, in [8]–[26]. GR is consi-
dered as a combination of the correlation detector that is opti-
mal in the Neyman-Pearson criterion sense under detection of 
signals with a priori known parameters and the energy detector 
that is optimal in the Neyman-Pearson criterion sense under 
detection of signals with a priori unknown parameters. The 
main functioning principle of GR is a matching between the 
model signal generated by the local oscillator in GR and the 
information signal by whole range of parameters. In this case, 
the noise component of the GR correlation detector caused by 
interaction between the model signal generated by the local 
oscillator in GR and the input noise and the random compon-
ent of the GR energy detector caused by interaction between 
the energy of incoming information signal and the input noise 
are cancelled in the statistical sense. This GR feature allows us 
to obtain the better detection performance in comparison with 
other classical receivers. 
   In this paper, the GR employment with non-blind beamfor-
ming algorithms and DOA estimation technique in MIMO wi-
reless communication systems is discussed. The simulation re-
sults demonstrate a performance superiority of wireless com-
munication system constructed based on GR and applicability 
of the non-blind beamforming algorithms and DOA estimation 
techniques employed by GR for interference cancellation in 
comparison with wireless communication systems used the co-
nventional detectors with the same non-blind-beamforming al-
gorithms and DOA estimation procedures. 
   The remainder of this paper is organized as follows: the Sec-
tion II presents the main GR functioning principles. The Secti-
on III delivers a description of non-blind beamforming algor-
ithms employed by GR. Implementation of DOA estimation 
algorithm for wireless communications systems employed by 
GR is discussed in Section IV. The simulation results are pre-
sented in Section V. Some conclusions are discussed in Secti-
on VI. 

II. GR FUNCTIONING PRINCIPLES 
   As we mentioned before the GR is constructed in accordan-

ce with GASP in noise [8]–[26]. The GASP introduces an ad-
ditional noise source that does not carry any information about 
the signal with the purpose to improve a qualitative signal de-
tection performance. This additional noise can be considered 
as the reference noise without any information about the signal 
to be detected. 
   The jointly sufficient statistics of the mean and variance of 
the likelihood function is obtained in the case of GASP emplo-
yment, while the classical and modern signal processing theo-
ries can deliver only a sufficient statistics of the mean or vari-
ance of the likelihood function (no the jointly sufficient statis-
tics of the mean and variance of the likelihood function).Thus, 
GASP implementation allows us to obtain more information 
about the input process or received signal. Owing to this fact, 
the receivers constructed based on GASP basis are able to im-
prove the signal detection performance in comparison with ot-
her conventional receivers. 
   The GR consists of three channels (see Fig. 1): the correlati-
on channel (the preliminary filter PF, multipliers 1 and 2, mo-
del signal generator MSG); the autocorrelation channel (PF, 
the additional filter AF, multipliers 3 and 4, summator 1); and 
the compensation channel (the summators 2 and 3 and accum-
ulator 1). 

 
 

Figure 1. Principal flowchart of GR 
 
   As we can see from Fig. 1, under the hypothesis 1H  (a “yes” 
signal), the GD correlation channel generates the signal comp-
onent ][][mod ksks ii

caused by interaction between the model 
signal (the reference signal at the GR MSG output) and the in-
coming information signal and the noise component ×][mod ks

i
    

][kiξ caused by interaction between the model signal ][mod ks
i

 

and the noise ][kiξ (the PF output). Under the hypothesis 1H , 
the GD autocorrelation channel generates the information sig-
nal energy ][2 ksi and the random component ][][ kks ii ξ caused 
by interaction between the information signal ][ksi and the noi-
se ][kiξ .The main purpose of the GD compensation channel is 
to cancel the noise component ][][mod kks ii

ξ of the GD correla-
tion channel and the GD autocorrelation channel random com-
ponent ][][ kks ii ξ based on the same nature of the noise ][kiξ . 
   For description of the GD flowchart we consider the discrete 
-time processes without loss of any generality. Evidently, this 
cancelation is possible only satisfying the condition of equali-
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ty between the signal model ][mod ks
i

and incoming signal 

][ksi over the whole range of parameters. The condition 
][][mod kisks

i
= is the main functioning condition of the GD. 

To satisfy this condition, we are able to define the incoming 
signal parameters. Naturally, in practice, signal parameters are 
random. How we can satisfy the GD main functioning conditi-
on and define the signal parameters in practice if there is no a 
priori information about the signal and there is an uncertainty 
in signal parameters, i.e. information signal parameters are ra-
ndom, is discussed in detail in [8], [9]. 
   Under the hypothesis 0H , a “no” information signal, satisfy-
ing the GD main functioning condition, i.e. ][][mod ksks ii

= , 

we obtain the background noise ][][ 22 kk ii ξη − only at the GD 
output. Additionally, the practical implementation of the GD 
decision statistics requires an estimation of the noise variance 

2
wσ using the reference noise ][kiη at the AF output. AF is the 

reference noise source and the PF bandwidth is matched with 
the bandwidth of the information signal ][ksi to be detected. 
The threshold apparatus (THRA) device defines the GD thre-
shold. 
   PF and AF can be considered as the linear systems, for exa-
mple, as the bandpass filters, with the impulse responses 

][mhPF and ][mhAF , respectively. For simplicity of analysis, 
we assume that these filters have the same amplitude-frequen-
cy characteristics or impulse responses by shape. Moreover, 
the AF central frequency is detuned with respect to the PF ce-
ntral frequency on such a value that the information signal can 
not pass through the AF. Thus, the information signal and noi-
se can be appeared at the PF output and the only noise is appe-
ared at the AF output. If a value of detuning between the AF 
and PF central frequencies is more than sf∆÷ 54 , where sf∆ is 
the signal bandwidth, the processes at the AF and PF outputs 
can be considered as the uncorrelated and independent proces-
ses and, in practice, under this condition, the coefficient of co-
rrelation between PF and AF output processes is not more than 
0.05 that was confirmed by experiment in [27] and [28]. 
   The processes at the AF and PF outputs present the input 
stochastic samples from two independent frequency-time regi-
ons. If the noise ][kw at the PF and AF inputs is Gaussian, the 
noise at PF and AF outputs is Gaussian, too, owing to the fact 
that PF and AF are the linear systems and we believe that the-
se linear systems do not change the statistical parameters of 
the input process. Thus, the AF can be considered as a genera-
tor of reference noise with a priori knowledge a “no” signal 
(the reference noise sample). A detailed discussion of the AF 
and PF can be found in [9], [10]. 
   The noise at the PF and AF outputs can be presented in the 
following form:     
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   Under the hypothesis 1H , the signal at the PF output (see Fig. 

1) can be defined as ][][][ kkskx iii ξ+= , where ][kiξ is the ob-
served noise at the PF output and ][][][ kskhks ii = ; ][khi are the 
channel coefficients indicated here only in general case. Under 
the hypothesis 0H and for all i and k, the process =][kxi      

][kiξ at the PF output is subjected to the complex Gaussian di-
stribution and can be considered as the independent and identi-
cally distributed (i.i.d.) process. The process at the AF output 
is the reference noise ][kiη with the same statistical parameters 
as the noise ][kiξ (we make this assumption for simplicity). 
   The decision statistics at the GD output presented in [8], [9] 
is extended to the case of antenna array employment when an 
adoption of multiple antennas and antenna arrays is effective 
to mitigate the negative attenuation and fading effects. The 
GD decision statistics can be presented in the following form:  
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where [ ] )1(),...,0( −= NxxX is the vector of the random pro-
cess forming at the PF output and GDTHR is the GD detection 
threshold. Under the hypotheses 1H and 0H , and when the amp-
litude of the signal is equal to the amplitude of the model sig-
nal, i.e. ][][mod ksks ii

= , the GD decision statistics )(XGDT ta-
kes the following form, respectively: 
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   In (3) the term s
N
k

M
i i Eks =∑ ∑−

= =

1
0 1

2 ][ corresponds to the ave-
rage signal energy, and the background noise is described by 

the term ∑ ∑∑ ∑ −

= =

−

= =
−

1
0 1

21
0 1

2 ][][ N
k

M
i i

N
k

M
i i kk ξη presents the back-

ground noise at the GD output. The GD background noise is a 
difference between the noise power forming at the PF and AF 
outputs. In the ideal case (equality of noise statistical parame-
ters at the PF and AF outputs), this difference tends to appro-
ach zero in the statistical sense. Practical implementation of 
the GD decision statistics requires an estimation of the noise 
variance 2

wσ using the reference noise at the AF output.  

III. GR NON-BLIND BEAMFORMING 
   Let us consider general definitions. For an antenna array em-
ployed by adaptive beamforming algorithm the instant output 
vector ][kZ is defined as 

                                  ][][][ kkk H XWZ =   ,                          (4) 
where 
        1,,0  ,][,],[],[][ }{ 21 −== NkkXkXkXk M X        (5) 

Latest Trends on Communications

ISBN: 978-1-61804-235-4 36



 

 

is the discrete-time incoming signal vector received by anten-
na array or beamformer input signal; ][kHW is the weight vec-
tor representing a series of discrete-time amplitude and phase 
coefficients that adjust accordingly the amplitude and phase of 
the information signal. The weight vector is updated by varie-
ty of adaptive beamforming algorithms. 
   The non-blind beamforming algorithms are the algorithms 
updating the weight vector based on the reference signal. The 
knowledge about the information signal is required to form a 
beam with the high gain towards the information signal and 
generate nulls towards the interfering signals at the same mo-
ment through the adjustment of the weight vectors. LMS, RLS 
and SMI algorithms are the typical non-blind beamforming al-
gorithms employed by GR for interference cancellation. These 
three algorithms are based on the minimum mean square error 
(MMSE) criterion and have difference characteristics. 
   The main principle of MMSE is to minimize the mean squa-
re error between the beamformer output and the reference sig-
nal to update the weight vectors [29]  

                        
22  ][][][ ][ kkkk H XWde −=  ,                      (6) 

where ][ke is the error vector between the beamformer output 
and reference signal or model signal vector (the MSG output); 
and ][kd is the reference signal vector in the beamformer. Tak-
ing the mathematical expectations of both sides in (6) and ap-
plying some basic algebraic transformations, we obtain 

][][][][][2][][ }{}{ 22 kkkkkkEkE HH WRWrWde +−=  
(7) 

where the covariance matrix ][kR and correlation matrix ][kr  
are given by 

                              }{ ][][][ kkEk HXXR =  ,                         (8) 

                                  }{ [k]][][ dXr kEk =  .                           (9) 

   The MMSE is given by setting the gradient vector of (7) 
with respect to the weight vector ][kW , which is equal to zero 

             0][][2][2][ }{ }{ 2
][ =+−=∇ kkkkEk WRreW  .     (10) 

The solution of (10) can be presented in the following form  

                                ][][][ 1op kkk rRW −=  ,                        (11) 

that is well known as the optimum Wiener solution [29]. 

A. LMS Algorithm 
   General Statements

   Operation of LMS algorithm can be defined by the follow-
ing form [4], [30]:  

. LMS algorithm is an iterative beamfor-
ming algorithm that uses the estimate of gradient vector from 
the available data based on the MMSE criterion and steepest 
descent method. LMS algorithm makes successive corrections 
of the weight vector in the negative direction of the gradient 
vector that should eventually lead to the optimal weight vect-
or. By updating the weight vector that adjusts the phase and 
amplitude of the input signal, respectively, the output signal 
(beamformer output) will be close to the information signal by 
direction. 

                             ][][][ LMS
GR kkk dZe −=∗  ,                         (12) 

                      ][][ ][]1[ kkkk GRZeWW ∗+=+ µ  ,               (13) 

where µ is the step size adjusting the convergence rate of the 
LMS algorithm and ∗ denotes the complex conjugate. The 
LMS algorithm is usually stable under the following conditi-
on ϕµ <<0 , whereϕ is the upper limit of the step size to en-
sure the algorithm stability. 
   As was shown in [6], the upper limit can be given by  

             
max

2
λ

ϕ =     or    
]}[{

22
1

1

ktr

M

i
i R

== ∑
=

−λϕ   ,          (14) 

where iλ is the eigenvalue of the received signal correlation 
matrix, and maxλ is the largest eigenvalue; M is the number of 
antenna array elements or the number of eigenvalues of the 
correlation matrix ][kR ; }{tr means the trace of a matrix.The 
right side in (14) is a more conservation upper limit of the step 
size. 
   The eigenvalue spread of the matrix ][kR is inversely propo-
rtional to the convergence of the LMS algorithm. The widesp-
read eigenvalues of ][kR may cause a slow convergence rate. 
Simultaneously, the variable signal environment leads to un-
stable eigenstructure of ][kR and causes a bad convergence pe-
rformance for a fixed step size. Nowadays, the large number 
of variable step size LMS algorithms has been proposed in 
[30]–[32]. 
   The generic approach is to control the step size by establish 
a function with respect to the mean squared error (MSE) at the 
beamformer output. The step size is increased when there is a 
large error, and the stable beamformer with a small error sho-
uld decrease the step size. Another variable step size algorithm 
based on the signal-to-noise ratio (SNR) was proposed in [33]. 
This approach uses the antenna subarray elements to estimate 
a rough value of SNR. Based on defined SNR, a relational ex-
pression with the step size can be established. 


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where maxµ and minµ are the maximum and minimum step siz-
es; maxSNR and minSNR are the limited maximal and minimal 
SNR defined at maxµ and minµ , respectively, with the purpose 
to keep a stable convergence performance; )(SNRf  is a func-
tion of SNR to control the step size adaptively. This function is 
a decreasing function since small step size is suitable for the 
large SNR . This variable step size algorithm based on SNR is 
available in the case when the information signal is changeab-
le and possesses a good convergence performance. 

   GR with LMS Beamformer. In the case when there are inte-
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rfering signals jointly with the received signal at the GR input, 
the LMS algorithm can be used at the GR output to cancel the 
interference. The structure of GR with LMS beamformer is 
shown in Fig.2. LMS beamformer cancels the interference co-
mponent at the GR output using the model signal generated by 
GR MSG. 

 
 

Figure 2. GR with LMS beamformer 
 
   Process forming at the GR output when the interference is 
taken into consideration is given by 

GRZ  

}{
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0 1

222
mod ][][][][][2][][∑∑
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= =
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N
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M

i
iiiiii kkkIkkIksks

i
ξηξ  , 

(16) 

where ][kIi is the interfering signal, ][2 kIi is the interfering sig-

nal energy. The term ][][][2 2 kIkkI iii −− ξ in (16) indicates an 
interaction between the interference and noise that deteriorates 
the GR performance. 
   In GR with LMS beamformer, the reference signal of LMS 
beamforming algorithm ][][ 2

mod kk Sd = should be equivalent to 
the squared model signal at the GR MSG output due to the 
fact that the energy of the information signal is formed at the 
GR output. According to (4), (12), and (13), we can write 

                                      ][][ 2
mod kk Sd =  ;                             (17) 

                             ][][][ GR
LMS
GR kkk H ZWZ =  ;                   (18) 

                        ][][][][ 2
modGR kkkk H SZWe −=∗  ;              (19) 

                       ][][ ][]1[ GR kkkk ZeWW ∗+=+ µ  .              (20) 

Thus, the process forming at the GR output with LMS beam-
former takes the form  
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   The optimal weight vector obtained at the sample size 1−k  
can be presented as 

     ]1[]1[][][][]1[ 11 −−===− −− kkkkkk ρρWW RR  ,       (22) 

where ][][][ GRGR kkk HZZ=R is the autocorrelation matrix of 
the decision test statistics GRZ at the GR output, and =][kρ       

][][][][ GR
2
modGR kkkk dZSZ = is the correlation matrix betwe-

en the decision statistics at the GR output and the LMS refere-
nce signal, respectively. Equation (22) is satisfied under the 
condition that the received signal is not varied from 1−k to k 
samples, i.e. ]1[][ GRGR −= kk ZZ . 
   Substituting (22) into (21), we obtain 

}}{{ ][][][][][ GR

1

0

1
1

0
GR

LMS
GR kkkkk H

N

k

N

k

H ZρZWZ ∑∑
−

=

−
−

=

== R  

][][][][][ GR
2
modGR

1
1

0
GRGR }}{{ kkkkk H

N

k

H ZSZZZ −
−

=
∑=  

                             ∑∑
−

=

−

=

==
1

0

2
1

0

2
mod ][][

N

k

N

k
kk SS  .                      (23) 

Therefore, we can see that the interference plus noise compo-
nent in (16) is cancelled by the LMS beamformer and finally 
the GR output with LMS beamformer can be approximated by 
the decision test statistics defined in (3). 

B. RLS Algorithm 
   General Statements.

][kR
 The convergence of the LMS algorithm 

depends on the eigenvalue of the correlation matrix .If the 
correlation matrix ][kR has a wide range of eigenvalues, the al-
gorithm converges slowly. The RLS algorithm is one of set of 
the algorithms that can improve the convergence performance 
by updating the weight vector based on MMSE criterion and 
Newton’s method. The Newton’s method is known as the gra-
dient search method used to define the optimal weight vector 
by searching the performance surface which is defined with 
respect to an independent parameter [34]. This parameter is 
usually specified to be the MSE between the output and input 
in the adaptive signal processing area. 
   The common feature between the steepest descent method 
and the Newton’s method is that both of them are the gradient 
searching methods and approach a direction of the optimal we-
ight value by searching the performance surface. Newton’s 
method updates the direction of searching in such a way that it 
points to the optimal weight vector forever, while the steepest 
descent indicates a negative direction of the gradient vector. 
Because of this, the RLS algorithm exhibits extremely fast co-
nvergence compared with LMS algorithm. However, this be-
nefit leads us to increasing the computational cost. 
   RLS is realized by replacing the step gradient size µ in (23) 

by the gain matrix ][1 k−R which is the inverse with respect to 
the matrix ][kR . Thus, the recursive equation for updating the 
weight vector can be defined as [29]  
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                    ][][][][]1[ 1 kkkkk SeWW ∗−+=+ R                  (24) 

where ][kR is given by 

       ∑
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HjkH jjkkkk
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][][][][]1[][ SSSS γγRR ,      (25) 

where γ is called the forgetting factor and intended to ensure 
that the data in the distant past are forgotten in order to allow 
the beamformer to follow the statistical variations of the obse-
rvation data. The forgetting factor γ is a positive constant that 
should be chosen within the limits of the interval 10 ≤< γ . 
   We obtain the following recursive equation 

           }{ ]1[][][]1[][ 1111 −−−= −−−− kkkkk RRR Sqγ ,        (26) 

using the Woodbury identity [29] with the purpose to derive 
an inverse of the covariance matrix ][kR , where ][kq is the ga-
in vector that can be calculated as [35]  
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][]1[][1

][]1[][ 1
11

11
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Thus, (24) can be rewritten as 

                        ][][][]1[ kkkk ∗+=+ eqWW  .                     (28) 

 
 

Figure 3. GR with RLS beamformer 

GR with RLS Beamformer

][kS

. The structure of GR employing 
RLS algorithm is presented in Fig. 3. Similar to the case of 
LMS algorithm, the RLS beamformer is applied at the GR out-
put for interference cancellation. The beamformer input  
given by (24)–(27) can be considered as the GR output 

][GR kZ . Simultaneously, the error in (28) is defined by (18) 
because the reference signal is the squared model signal 

][2
mod kS generated by the GR MSG. Thus, the process at the 

GR output under employment of the RLS beamformer can be 
presented in the following form: 
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where the gain vector ][kq is defined by the GR output ][GR kZ  

(see (27)) and the inverse matrix ][1 k−R is obtained based on 
(26). Similar to (22) and (23), we can find that the interference 
plus noise component in (16) can be suppressed by the RLS 
beamformer and the final GR output with RLS beamformer is 

close to the information signal energy ∑ −

=

1
0

2 ][N
k

ks . 

C. SMI Algorithm 
General Statements.

][kR

 SMI algorithm is another technique to 
improve the convergence performance when the eigenvalues 
of the correlation matrix are widespread. The main prin-
ciple of SMI algorithm is to inverse the sample matrix directly 
to obtain the optimal weight vector. In practice, the signals are 
unknown and the environment changes frequently. Thus, a 
block adaptive approach updating the weight vector to define 
new requirements imposed by varying conditions can be used 
to deliver a better performance in comparison with continuous 
approach [36]. 

The stability of the SMI algorithm depends on the ability to 
invert the correlation matrix ][kR that may leads to computati-
onal complexities which are not easily overcome. However, 
SMI algorithm is a good choice in the case when high require-
ments of convergence performance are needed under the dis-
continuous varying environment. If a priori knowledge about 
information signal parameters is known the optimum weights 
can be determined directly based on the Wiener solution of 
(11). This approach is just the SMI algorithm or, namely, the 
direct matrix inverse (DMI). 

When the input signal parameters are varied, the received 
data can be divided into several blocks that have stable spatial 
information and the optimal weights can be defined based on 
these blocks. This method is called the block adaptive method 
[36]. The block adaptive method updates the weight vector pe-
riodically by obtaining estimations of the covariance matrix 

][kR and correlation matrix ][kρ within the limits of the block 
size 12 LL − considered as the observation interval. The estima-
tions can be presented in the following form: 
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Then, the weight vector can be estimated by the Wiener so-
lution within the limits of the observation interval 12 NN −  

                                 ρW ˆ ˆˆ 1opt
12

−
− =RLL  .                                (31) 
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SMI algorithm has the best convergence performance [29].Ho-
wever, it is not the best algorithm due to the limitations in co-
mputational complexity. 

   GR with SMI Beamformer. 

][GR lZ

As we stated before, the SMI 
algorithm can also be applied under the GR employment. Fi-
gure 4 presents the GR flowchart with SMI beamformer. The 
beamformer input in (30) is the GR output , and the es-
timation correlation matrix ρ̂ based on (17) and (30) can be 
written in the following form: 

                           ∑
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=
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2
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Figure 4. GR with SMI beamformer 
 
Taking into consideration (16) and (31) we can write: 

∑
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The error information is not used to update the weight vectors 
for this structure. This is the main difference between the SMI 
beamformer and the LMS and RLS adaptive beamformers.The 
observation interval 12 LL − is used to provide a periodical de-
termination of the weights if a nonstationary environment is 
anticipated. 

IV. DOA ESTIMATION BY GR 
   DOA is an important parameter in the array signal process-
ing. For smart antenna system, for example, in the wireless 
mobile communications, the DOA of signal is required for be-
amforming technique to form a beam in desired direction tak-
ing into account the multipath signal components.By this way, 
the signal-to-interference-plus-noise ratio (SINR) is improved 
by producing nulls towards the interfering signals. 
   In practice, DOA is usually unknown and should be estima-
ted a priori based on the spatial information in the data receiv-
ed by antenna array. The performance of DOA estimation al-
gorithm depends on many parameters such as the number of 
signals and their spatial distribution, the number of array ele-
ments and their spatial distance, the SINR, etc. The subspace 

algorithms, such as MUSIC and ESPRIT, are widely used and 
recognized as the effective estimation algorithms under differ-
ent conditions. 
   The main idea of the subspace algorithms is to estimate the 
DOA by utilizing the characteristics of the noise and signal su-
bspace derived from eigenvalue decomposition. Here, MUSIC 
and ESPRIT algorithms are employed by GR for DOA estima-
tion. The GR flowchart with the DOA estimator is shown in 
Fig. 5. The DOA of signal is estimated at the PF output and is 
provided to the GR MSG with the purpose to generate the mo-
del signal. 

 
 

Figure 5. GR with DOA estimator 

A. MUSIC Algorithm 
   MUSIC algorithm is a high angular resolution technique for 
DOA estimation based on the eigenstructure of input covarian-
ce matrix and the decomposition of covariance matrix into two 
orthogonal matrices, i.e. the signal subspace and noise subspa-
ce. The main principle of MUSIC algorithm is to estimate the 
DOA by exploiting the orthogonal feature between the noise 
subspace and the signal subspace when the number of signals 
is less than the number of antenna array elements and the noi-
se in each channel is uncorrelated and independent. The high 
resolution of MUSIC algorithm depends on the accuracy of ar-
ray and requires a precise calibration of array. 
   The uniform linear array (ULA) is applied as an example to 
illustrate the algorithm procedure. If N is the number of sig-
nals, M is the number of antenna array elements, as shown in 
[7], the array covariance matrix can be determined in the follo-
wing form 

                              IAARR 2
w

H
XXZZ σ+=  ,                      (34) 

where 2
wσ is the noise variance, I is the MM × identity matrix; 

A is the NM × antenna array steering matrix or antenna array 
manifold 

                         ][ )(,),(),( 21 Nθθθ sssA =  ;                      (35) 

XXR is the NN × received signal correlation matrix within the 
limit of the considered interval ]1,0[ −N  

                                     H
XX XXR =  ,                                 (36) 

where T
N kxkxkx }{ ][,],[],[ 21 =X is the received discrete-ti-
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me signal matrix and Nθθθ ,,, 21  denote the signal angles, T 
denotes the transpose matrix. 
   By the eigenvalue decomposition, the signal correlation ma-
trix XXR has N eigenvalues and eigenvectors associated with 
signals and NM − eigenvalues and eigenvectors associated 
with the noise, respectively. Thus, the noise and signal eigen-
vector subspaces can be determined as 
                            ][ 21 NMW −= vvvV    ;                           (37) 

                             ][ 1 MNMX vvV +−=   .                         (38) 

Therefore, we can obtain the DOA, i.e. Nθθθ ,,, 21  , by proje-
cting the array steering vector )(mod θS onto WV for all values 
ofθ , and then the N values ofθ can be found if the projection 
is zero [7] 

                   1,1,0      , 0)(
2

−== NnWn
H

Vs θ                (39) 

where 2
 is the square of two matrix norms. 

   Obviously, the steering vector )( nθs of an arbitrary incident 
signal is orthogonal to the noise subspace. Thus, the MUSIC 
pseudo spectrum can be given by [7]  

                      
 )()( 

1)(MUSIC
θθ

θ
sVVs H

WW
H

G =   ,               (40) 

where means the absolute value. By this way, the DOA of 
the signal can be estimated by searching the spectrum peak in 
the angular spectrum produced by (40). For GR with DOA es-
timator, the DOA of the desired signal is provided by MUSIC 
algorithm applied to GR MSG with the purpose to generate 
the model signal (see Fig. 5). 

B. ESPIRIT Algorithm 
   The MUSIC algorithm involves an exhaustive search thro-
ugh all possible steering vectors to estimate the DOA with 
high computational complexity. ESPRIT is a subspace DOA 
estimation algorithm that can greatly reduce the computational 
cost and storage requirements [7].The main principle of 
ESPRIT algorithm is to divide the original antenna array into 
two subarrays with a translation invariance structure, and then 
a difference of the signal subspaces spanned by the data vect-
ors associated with the subarrays will only be a rotational in-
variance factor containing the DOA information, which is exp-
loited for the DOA estimation [37]. 
   Consider ULA consisting of M elements. Two identical an-
tenna subarrays have i elements that Mi < for antenna subar-
rays that are not overlap Mi =2 . The number of signals N is 
less than M. As was shown in [7], [37], the received data vec-
tors of two antenna subarrays at the same instant of time are 
given by 

                                     111 WXAZ +=  ,                             (41) 

                        21222 WΦXAWXAZ +=+=  ,                (42) 

              }{ ]sinexp[]sinexp[ 1 Ndjdjdiag θνθν =Φ  ,    (43) 

where 1Z and 2Z are the 1×i received data vectors of antenna 
subarrays; 1A and 2A are Ni × subarray manifold; 1W and 2W  
are the 1×i noise signal vectors of the subarrays; d is the dista-
nce between the antenna array elements; andν is the wave nu-
mber. Based on (41)–(43) we can see that there is only a phase 
difference ]sinexp[ Ndj θν between the received signals of two 
antenna subarrays, which is defined as rotational invariance. 
Thus, if we know the diagonal matrixΦ given by (43) we can 
then estimate the target signal DOA. 
   Combining two data vectors (41) and (42) to form the comp-
lete received data vector of ULA, we obtain 
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.          (44) 

The covariance matrix in (44) has N eigenvectors associated 
with signals and Ni −2 eigenvectors associated with the noise. 
The subspace spanned by the column vectors of antenna array 
manifold and the signal subspace are orthogonal to the noise 
subspace, and the antenna array manifold is a full column rank 
matrix. By the uniqueness of orthogonal space, the subspace 
spanned by the column vectors of antenna array manifold is 
the same as the signal subspace. Thus, a unique NN × nonsin-
gular matrix T satisfies the following equation 
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where XV is the signal subspace;
1XV and

2XV are the signal 
subspaces of the antenna sub arrays. 
   Then we can find that 

                                      ΨVV
12 XX =  ,                               (46) 

where Ψ is the rotational matrix given by 

                                        ΦTTΨ 1−=  .                               (47) 

Equation (47) is considered as an eigenvalue decomposition of 
the rotational matrixΨ . If we know the matrix ,Ψ we can obt- 
ain the matrixΦ and enable to estimate the DOA of each sig-
nal. 
   The least square (LS) and the total least square (TLS) meth-
ods are commonly used to obtain the rotational matrixΨ . Bas-
ed on these two methods, there are two ESPRIT algorithms, 
i.e. LS-ESPRIT algorithm and TLS-ESPRIT algorithm. After 
obtaining the matrixΨ the eigenvalues Ψλ can be defined and 
equal to the diagonal elements of the matrix such that 
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Then we can estimate DOA using the following equation  

                                



= −

vd
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   The ESPRIT DOA estimation algorithm does not require 
scanning over all possible directions. Because of this, the 
DOA of signal can be obtained without high computational ef-
forts and large size of memory by the ESPRIT algorithm. Ho-
wever, there is a requirement about the array structure, for ex-
ample, the antenna array should have at least two identical an-
tenna subarrays. 

V. SIMULATION AND DISCUSSION 
   Under simulation, we consider the antenna with ULA 8 ele-
ments and half signal wavelength distance. There are three in-
cident signals. The first signal is the information signal arriv-
ing at ,10 the second and third signals are interfering signals 
arriving at 60− and ,60 respectively. These angles may be as-
sumed to be unknown and estimated by DOA estimation 
algorithms. The interference-to-noise ratio (INR) is kept const-
ant and equal to dB 5 . All signals are set as Gaussian random 
sequences with zero mean. 
   We compare GR and correlation receiver that is optimal in 
the Neyman-Pearson sense (NP receiver) by performance und-
er identical input conditions. Figure 6 shows a comparison of 

 
 

Figure 6. GR and NP receiver outputs; no interference 
 
GR and NP receiver output signal modulus when there are no 
interfering signals and the input SNR is equal to dB 01 . The 
sample size N is equal to 10000. As follows from Fig. 6, the 
advantage of GR over NP receiver is evident. The output SNRs 
for GR and NP receiver are approximately equal to 3.52 dB 
and dB 4.2− . 
   Comparison of the output SNR versus the input SNR for GR 
and NP receiver is presented in Fig. 7. As was discuss in [8]– 

 
 

Figure 7. The output SNR versus the input SNR for GR and NP 
receiver; no interference 

[14], we can see when SNR is approximately less than dB 1− , 
the GR performance is low in comparison with the NP receiv-
er one. Owing to selection of input conditions, this case does 
not correspond to receiver performance employed in practice 
because the probability of detection in this case is less than 0.1 
and this is not practical case. In practice, the GR overcomes 
NP receiver by detection performance [15]–[26]. 
   If the DOA of incident signals is unknown, the MUSIC and 
ESPRIT algorithm are employed for DOA estimation. Two in-
terfering signals are considered and the DOA of all signals is 
estimated by two algorithms. The MUSIC angular spectrum 
and the estimated DOA of signals by ESPRIT algorithm are 
shown in Fig. 8 at the input dB 5=SNR . Both algorithms have 
good resolution for DOA estimation. 

 
 

Figure 8. The estimated DOA of signals: dB 5=SNR  
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Figure 9. RMSE versus the input SNR 
 
For details of performance analysis, the root-mean square er-
ror (RMSE) criterion [38] 
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can be employed to assess and compare the DOA estimation 
of different algorithms, where N is the sample size, M is the 
number of incident signals, iθ is the ith DOA and ik ,θ̂ denotes 
the ith estimated DOA in the kth experiment. The RMSE ver-
sus the input SNR is demonstrated in Fig. 9. We see that the 
MUSIC algorithm has a higher resolution in comparison with 
ESPRIT algorithm at the low SNR values. At the high SNR, a 
difference between MUSIC and ESPRIT algorithms is negligi-
ble and both algorithms can be employed by GR in MIMO wi-
reless communication system to generate the model signal in a 
general case. 

 
 

Figure 10. GR array pattern with non-blind beamforming 
 
   Knowledge of signal DOA gives us an opportunity to emp-
loy the non-blind beamforming algorithms such as LMS, RLS, 
and SMI based on the reference signal generated by GR MSG. 
In the course of simulation, the forgetting factor of RLS is set 
equal to 0.99 and the block observation interval of SMI algor-

ithm is ]1,0[ −N . The step size in LMS algorithm is chosen by 
(14) applying the variable step size approach based on SNR.  
   Figure 10 presents the antenna array pattern at the GR output 
with non-blind beamformer when the SINR is equal to 10 dB. 
At the target return signal direction equal to ,10 the beamfor-
mer can form a high gain. The nulls in the array pattern denote 
the direction of vectors of the interfering components owing to 
the GR processing. 

 
 

Figure 11. The output SINR versus the input SINR 
 

   The output SINR as a function of the input SINR for GR and 
NP receiver with and without the LMS beamformer is presen-
ted in Fig.11. As we can see, a superiority of GR with non-
blind beamforming algorithms in comparison with NP receiver 
is evident. Additionally, Fig. 11 presents the performance of 
interference cancellation by GR with non-blind beamforming 
algorithms in the term of the output SINR versus the input 
SINR. RLS and SMI algorithms have the better performance 
under interference cancelation in comparison with LMS algo-
rithm. 

 
 
Figure 12. GR output with interfering signals: a) without beamformer 

and b) with beamformer 
 
   Figure 12 shows the GR output without LMS beamformer, 
Fig. 12a, and with LMS beamformer, Fig. 12b, when the inter-
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fering signals are present and the SINR is equal to dB 5 . The 
output SNR of GR with LMS beamformer is dB 98.13 while 
the output SNR of GR without LMS beamformer is dB 94.1 . 

 
 

Figure 13. NP receiver output with interfering signals: a) without 
beamformer and b) with beamformer 

 
   Figure 13 presents the NP receiver output without LMS bea-
mformer, Fig. 13a, and with LMS beamformer, Fig. 13b, when 
the interfering signals are present and the SINR is equal to 5dB 
The output SNR of NP receiver with LMS beamformer is equ-
al to dB 98.3 and the output SNR of NP receiver without LMS 
beamformer is dB 11.2− . Under comparison of Figs.12 and 13, 
the advantage of GR with LMS beamformer over the NP rece-
iver with LMS beamformer is evident. 

VI. CONCLUSIONS 
The GR with non-blind beamforming algorithms, namely, 

LMS, RLS, and SMI algorithms and DOA estimation proce-
dures is investigated. LMS, RLS and SMI non-beamforming 
algorithms are employed by GR with the purpose to cancel 
interference. MUSIC and ESPRIT algorithms are subspace 
DOA estimation algorithms employed by GR to provide the 
GR MSG output with the required DOA information. Compa-
rative analysis is carried out between the NP receiver and GR 
under the same initial conditions and demonstrates an applica-
bility of the proposed non-blind beamforming and DOA esti-
mation algorithms in GR that allows us to cancel interference. 
A great superiority of GR employment in MIMO wireless co-
mmunication systems is evident under comparison between 
the GR and NP receiver in terms of the output SNR. 
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