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Abstract—We investigate the generalized receiver (GR) constructed
based on the generalized approach to signal processing in noise empl-
oying non-blind beamforming algorithms and direction of arrival
(DOA) estimation, which isimplemented by MIMO wireless comm-
unication systems. Three non-blind beamforming algorithms, namely,
the least mean sguare (LMS), the recursive least square (RLS) and
the sample matrix inverse (SM1) are compared under employment by
GR. DOA estimation techniques are applied based on multiple signal
classification (MUSIC) and estimation of signal parameters viarotati-
onal invariance technique (ESPRIT). We suppose several GR structu-
res employing the above mentioned non-blind beamforming algor-
ithms jointly with DOA estimation procedure. Comparative anaysis
of simulation results allows us to conclude that the performance cur-
ves of GR with considered non-blind beamforming algorithms are
very close to each other. Also, simulation results demonstrate superi-
ority in the output signal-to-interference-plus-noise ratio (SINR) un-
der employment of GR with the discussed non-blind beamforming
algorithms and DOA estimation in MIMO wireless communication
systems in comparison with the Neyman-Pearson detector.

Keywords—Generalized receiver, non-blind beamfor ming, di-
rection of arrival (DOA), multiple signal classification (MUSIC),
signal-to-interference-plus-noise ratio (SINR), and root-mean-
squareerror (RMSE).

|. INTRODUCTION

ITH the large demand for high data rate applications
and improved signal quality over wireless channels ma-
ny investigations have been carried out to satisfy the re-
quirements of future wireless communication systems [1], [2].
One solution to these problems resides in the use of multiple
antennas at the transmitter and/or receiver sides referred as the
multiple-input multiple-output (MIMO) wireless communica
tion systems. Many proposals within the framework of MIMO
wireless communication systems have been introduced to imp-
rove the received signal quality and increase the high data rate
over wirelesslinks.
From the viewpoint of signal quality, it is known that the re-
ception of multiple copies of the transmitted data based on
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employment of multiple antenna wireless communication sys-
tems improves the wireless communication system performan-
ce in comparison with the use of single antenna wireless com-
munication systems. From viewpoint of channel capacity, it
has been demonstrated that the use of multiple antennas has a
great potential to increase substantially the data transmission
rate converting wireless communication system channels from
narrow to wide data pipes.

The problem of beamforming and direction of arrival (DOA)
of the information signal is a very important problem in the
MIMO wireless communication systems. In practice, the bea
mforming techniques are needed to eliminate effects of inter-
ference on MIMO wireless communication system performan-
ce. Adaptive beamforming is the mainstream technique for in-
terference elimination by defining dynamically the optimal
weight vectors of array antenna elements. Filtering procedures
are not able to distinguish the desired signal in the noise and
interference if they occupy the same frequency bandwidth.

The sources of desired and interfering signals are usually di-
ffered by spatial locations. The spatial separation can be exp-
loited to distinguish adesired signal in the background of inte-
rfering signals using beamforming as a spatial filtering appro-
ach [3]. Beamforming is a versatile approach for wireless co-
mmunications that is usually applied in antenna array systems
for spatial filtering to separate signals having overlapping fre-
guency content but originated from difference spatial locati-
ons. Adaptive beamforming is implemented in the case when
the signal spatial locations are variable. Beamforming is emp-
loyed using different algorithms with the purpose to change
the weight vectors adaptively with respect to each antenna ar-
ray element.

Adaptive beamforming algorithms can be categorized as the
non-blind and blind algorithms depending on whether the refe-
rence signal is used or not. The non-blind beamforming algor-
ithms update the weight vectors of antenna array to form a de-
sired direction vector based on information about the informa-
tion and reference signals. The least mean square (LMS), the
recursive least square (RLS), and the sample matrix inverse
(SM1) algorithms are categorized as the non-blind beamform-
ing algorithms. The constant modulus algorithm (CMA), the
spectral self-coherence restoral (SCORE), and the decision di-
rected (DD) algorithms are examples of the blind beamform-
ing agorithms,

Based on a priori knowledge about the information signal
the non-blind beamforming algorithms can update the optimal
weight vector with high accuracy. Therefore, the non-blind be-
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amforming technique attracts extensive research [4],[5]. When
apriori knowledge about the direction of arrival (DOA) of the
information signal is absent the non-blind beamforming tech-
niqueis not valid unless the DOA estimation technique is app-
lied. The main idea of DOA estimation technique is to exploit
the spatial information in the data received by the antenna ar-
ray. The beamforming based on the DOA estimation is a spe-
cial approach to blind beamforming agorithms.

A great number of DOA estimation algorithms have been
developed and categorized into two methods, namely, the con-
ventional and subspace methods. The conventional method ca-
Iculates a spatial spectrum and estimates DOASs by local maxi-
ma of the spectrum. Examples of this approach are the Bartlett
and Capon methods [6]. However these methods suffer from
lack of angular resolution. Therefore, the high angular resolu-
tion subspace methods such as the multiple signal classificati-
on (MUSIC) and the estimation of signal parameters via rota-
tiona invariance technique (ESPRIT) are widely used [7].

The generalized receiver (GR) has been constructed based
on the generalized approach to signal processing (GASP) in
noise and discussed in numerous journal and conference pa-
pers and some monographs, namely, in [8]-{26]. GR is consi-
dered as a combination of the correlation detector that is opti-
mal in the Neyman-Pearson criterion sense under detection of
signals with a priori known parameters and the energy detector
that is optimal in the Neyman-Pearson criterion sense under
detection of signals with a priori unknown parameters. The
main functioning principle of GR is a matching between the
model signal generated by the local oscillator in GR and the
information signal by whole range of parameters. In this case,
the noise component of the GR correlation detector caused by
interaction between the model signal generated by the local
oscillator in GR and the input noise and the random compon-
ent of the GR energy detector caused by interaction between
the energy of incoming information signal and the input noise
are cancelled in the statistical sense. This GR feature allows us
to obtain the better detection performance in comparison with
other classical receivers.

In this paper, the GR employment with non-blind beamfor-
ming algorithms and DOA estimation technique in MIMO wi-
reless communication systems is discussed. The simulation re-
sults demonstrate a performance superiority of wireless com-
munication system constructed based on GR and applicability
of the non-blind beamforming algorithms and DOA estimation
techniques employed by GR for interference cancellation in
comparison with wireless communication systems used the co-
nventional detectors with the same non-blind-beamforming al-
gorithms and DOA estimation procedures.

The remainder of this paper is organized as follows: the Sec-
tion |1 presents the main GR functioning principles. The Secti-
on Il delivers a description of non-blind beamforming algor-
ithms employed by GR. Implementation of DOA estimation
algorithm for wireless communications systems employed by
GR is discussed in Section V. The simulation results are pre-
sented in Section V. Some conclusions are discussed in Secti-
onVlI.

II. GR FUNCTIONING PRINCIPLES
As we mentioned before the GR is constructed in accordan-
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ce with GASP in noise [8]-[26]. The GASP introduces an ad-
ditional noise source that does not carry any information about
the signal with the purpose to improve a qualitative signal de-
tection performance. This additional noise can be considered
as the reference noise without any information about the signal
to be detected.

The jointly sufficient statistics of the mean and variance of
the likelihood function is obtained in the case of GASP emplo-
yment, while the classical and modern signal processing theo-
ries can deliver only a sufficient statistics of the mean or vari-
ance of the likelihood function (no the jointly sufficient statis-
tics of the mean and variance of the likelihood function).Thus,
GASP implementation allows us to obtain more information
about the input process or received signal. Owing to this fact,
the receivers constructed based on GASP basis are able to im-
prove the signal detection performance in comparison with ot-
her conventional receivers.

The GR consists of three channels (see Fig. 1): the correlati-
on channdl (the preliminary filter PF, multipliers 1 and 2, mo-
del signal generator MSG); the autocorrelation channel (PF,
the additional filter AF, multipliers 3 and 4, summator 1); and
the compensation channel (the summators 2 and 3 and accum-
ulator 1).

Additional Filter
milk]
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Figure 1. Principal flowchart of GR

As we can see from Fig. 1, under the hypothesis# (a*“yes’
signal), the GD correlation channel generates the signal comp-
onent s, [K]s[k] caused by interaction between the model

signal (the reference signal at the GR M SG output) and the in-
coming information signal and the noise component Smod; [K] X

& [k] caused by interaction between the model signal s [K]

and the noise & [K] (the PF output). Under the hypothesis#,
the GD autocorrelation channel generates the information sig-
nal energy s?[k] and the random component s [k]& [k] caused
by interaction between the information signal s[k] and the noi-
se & [k].The main purpose of the GD compensation channel is
to cancel the noise component s, [K]&;[K] of the GD correla-
tion channel and the GD autocorrelation channel random com-
ponent s[k]¢& [k] based on the same nature of the noise & [K] .

For description of the GD flowchart we consider the discrete
-time processes without loss of any generality. Evidently, this
cancelation is possible only satisfying the condition of equali-
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ty between the signal model s, [K] and incoming signal
s[k] over the whole range of parameters. The condition
Smog; [KT = 5; [K] is the main functioning condition of the GD.

To satisfy this condition, we are able to define the incoming
signal parameters. Naturally, in practice, signal parameters are
random. How we can satisfy the GD main functioning conditi-
on and define the signal parametersin practice if thereisno a
priori information about the signal and there is an uncertainty
in signal parameters, i.e. information signal parameters are ra-
ndom, isdiscussed in detail in [8], [9].

Under the hypothesis#, , a “no” information signal, satisfy-

ing the GD main functioning condition, i.e. Sy [K] =s/[K]

we obtain the background noisez?[k] - &£2[k] only at the GD

output. Additionally, the practical implementation of the GD
decision statistics requires an estimation of the noise variance

o2 using the reference noise;[k] a the AF output. AF is the

reference noise source and the PF bandwidth is matched with
the bandwidth of the information signal 5[k]to be detected.

The threshold apparatus (THRA) device defines the GD thre-
shold.

PF and AF can be considered as the linear systems, for exa-
mple, as the bandpass filters, with the impulse responses
hpe [m] and he[m] , respectively. For simplicity of analysis,
we assume that these filters have the same amplitude-frequen-
cy characteristics or impulse responses by shape. Moreover,
the AF central frequency is detuned with respect to the PF ce-
ntral frequency on such a value that the information signal can
not pass through the AF. Thus, the information signal and noi-
se can be appeared at the PF output and the only noise is appe-
ared at the AF output. If a value of detuning between the AF
and PF central frequencies is more than 4+ 5Af, where Af is

the signal bandwidth, the processes at the AF and PF outputs
can be considered as the uncorrelated and independent proces-
ses and, in practice, under this condition, the coefficient of co-
rrelation between PF and AF output processes is not more than
0.05 that was confirmed by experiment in [27] and [28].

The processes at the AF and PF outputs present the input
stochastic samples from two independent frequency-time regi-
ons. If the noisewWK] at the PF and AF inputs is Gaussian, the
noise at PF and AF outputs is Gaussian, too, owing to the fact
that PF and AF are the linear systems and we believe that the-
se linear systems do not change the statistical parameters of
the input process. Thus, the AF can be considered as a genera-
tor of reference noise with a priori knowledge a “no” signa
(the reference noise sample). A detailed discussion of the AF
and PF can be found in [9], [10].

The noise at the PF and AF outputs can be presented in the
following form:

Wee [k = €K1 = 3 e [k -]
s ®
War [K] =n[K] = ZhAF[m]Mk_m] .

m=—o0

Under the hypothesis#, , the signal at the PF output (see Fig.
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1) can be defined as x;[k] = s [K] + & [K] , where & [K] is the ob-
served noise at the PF output and s[k] = h[k]gk] ; h[K] arethe
channel coefficients indicated here only in general case. Under
the hypothesis#; and for al i and k, the processx[k]=
& [K] at the PF output is subjected to the complex Gaussian di-
stribution and can be considered as the independent and identi-
cally distributed (i.i.d.) process. The process at the AF output
is the reference noise ;[ k] with the same statistical parameters
as the noise &;[k] (we make this assumption for simplicity).

The decision statistics at the GD output presented in [8], [9]
is extended to the case of antenna array employment when an
adoption of multiple antennas and antenna arrays is effective
to mitigate the negative attenuation and fading effects. The
GD decision statistics can be presented in the following form:

N-1 M N-1 M
Ten (X) = D> 2% [KlSmoq [K1= D> %7[K]
k=0i=1 k=0i=1
N-1 M Py
+2 2 K2 THRgp @
k=0 i=1 o

where X = [x(0),...,x(N —1)] is the vector of the random pro-
cess forming at the PF output and THR;p, is the GD detection
threshold. Under the hypotheses#4 and %, , and when the amp-
litude of the signal is equal to the amplitude of the model sig-
nal, i.e. spoq [K] = 5[K], the GD decision statisticsTgp (X) tar
kes the following form, respectively:

N-1M N-1M N-1M

% Tep(X) = DY SPIKI+ Y. D nl k1= D> &K,
k=0i=1 k=0i=1 k=0i=1
N-1 M N-1 M

Ho Tep(X)= D> nilk]-> > &K .
k=0 i=1 k=0i=1

©)

In (3) the term th:)lz:\ilsf[k] = E, corresponds to the ave-
rage signal energy, and the background noise is described by

the term ZL\‘:Olzzlniz[k] —ZKN:;ZZlcfiZ[k] presents the back-
ground noise at the GD output. The GD background noise is a
difference between the noise power forming at the PF and AF
outputs. In the ideal case (equality of noise statistical parame-
ters at the PF and AF outputs), this difference tends to appro-
ach zero in the statistical sense. Practical implementation of
the GD decision statistics requires an estimation of the noise

variance a\,zv using the reference noise at the AF output.

[11. GRNON-BLIND BEAMFORMING

Let us consider general definitions. For an antenna array em-
ployed by adaptive beamforming algorithm the instant output
vector Z[k] is defined as

Z[kl =W [KIX[K] (4)
where

X[K] ={ X4[K], X,[K],..., Xy [K]}, k=0,....N=1  (5)
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is the discrete-time incoming signal vector received by anten-
naarray or beamformer input signal; W " [k] is the weight vec-

tor representing a series of discrete-time amplitude and phase
coefficients that adjust accordingly the amplitude and phase of
the information signal. The weight vector is updated by varie-
ty of adaptive beamforming agorithms.

The non-blind beamforming agorithms are the algorithms
updating the weight vector based on the reference signal. The
knowledge about the information signal is required to form a
beam with the high gain towards the information signal and
generate nulls towards the interfering signals at the same mo-
ment through the adjustment of the weight vectors. LMS, RLS
and SMI algorithms are the typical non-blind beamforming al-
gorithms employed by GR for interference cancellation. These
three algorithms are based on the minimum mean square error
(MMSE) criterion and have difference characteristics.

The main principle of MMSE is to minimize the mean squa-
re error between the beamformer output and the reference sig-
nal to update the weight vectors [29]

211 W H 2
e“[k] =| d[K] -W " [K]X[K] | , (6)

wheregk] is the error vector between the beamformer output

and reference signal or model signal vector (the MSG output);
and d[K] is the reference signal vector in the beamformer. Tak-

ing the mathematical expectations of both sidesin (6) and ap-
plying some basic algebraic transformations, we obtain

E{e’[K]} = E{d*[k]} - 2W " [K]r[K] + W " [KIR[KIW[K]
()
where the covariance matrix R[k] and correlation matrix r[K]
are given by

R[K] = E{X[KIX"[k]} , (8)

rkl = E{X[K]d[K]} . 9)

The MMSE is given by setting the gradient vector of (7)
with respect to the weight vector W[k] , which is equal to zero

VW[k]{ E{e’[k]} }

The solution of (10) can be presented in the following form

=—2r[k]+ 2R[K]W[K] =0 . (10

WKl = RKIr[K] (11)

that is well known as the optimum Wiener solution [29].

A. LMSAlgorithm

General Satements. LMS algorithm is an iterative beamfor-
ming algorithm that uses the estimate of gradient vector from
the available data based on the MM SE criterion and steepest
descent method. LM S algorithm makes successive corrections
of the weight vector in the negative direction of the gradient
vector that should eventually lead to the optimal weight vect-
or. By updating the weight vector that adjusts the phase and
amplitude of the input signal, respectively, the output signal
(beamformer output) will be close to the information signal by
direction.
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Operation of LMS algorithm can be defined by the follow-
ing form [4], [30]:

e[kl =Zga K] -d[K] |, (12)

WIk-+2] = WIK] + €' [KIZ plK] | (13)

where y is the step size adjusting the convergence rate of the

LMS agorithm and* denotes the complex conjugate. The
LMS algorithm is usually stable under the following conditi-
on0< u < ¢, whereg is the upper limit of the step size to en-

sure the algorithm stability.
Aswas shown in [6], the upper limit can be given by

or gozzi/%’l: 2
' t{RIK]}

i=1

, (14)

where /; is the eigenvalue of the received signal correlation
matrix, and A, is the largest eigenvalue; M is the number of

antenna array elements or the number of eigenvalues of the
correlation matrix R[k] ; tr{-- -} means the trace of a matrix.The

right sidein (14) is a more conservation upper limit of the step
size.

The eigenvalue spread of the matrix R[K] is inversely propo-
rtional to the convergence of the LM S algorithm. The widesp-
read eigenvalues of R[k] may cause a slow convergence rate.
Simultaneoudly, the variable signal environment leads to un-
stable eigenstructure of R[K] and causes a bad convergence pe-
rformance for a fixed step size. Nowadays, the large number
of variable step size LMS agorithms has been proposed in
[30]{32].

The generic approach is to control the step size by establish
afunction with respect to the mean squared error (MSE) at the
beamformer output. The step size is increased when there is a
large error, and the stable beamformer with a small error sho-
uld decrease the step size. Another variable step size algorithm
based on the signal-to-noise ratio (S\NR) was proposed in [33].
This approach uses the antenna subarray elements to estimate
arough value of SNR. Based on defined SNR, arelational ex-
pression with the step size can be established.

Hin if NR>NR
u=4 F(NR) if  SNR,x >SNR> S\lRmin ;
Hmax if NR<NRy;,

(15

where g, and g1, are the maximum and minimum step siz-
es, NR,,, and NR;,, are the limited maximal and minimal
NR defined at g4, and i, » respectively, with the purpose
to keep a stable convergence performance; f (SNR) is a func-

tion of S\NRto control the step size adaptively. Thisfunctionis
a decreasing function since small step size is suitable for the
large SNR. This variable step size algorithm based on SNRis
available in the case when the information signal is changeab-
le and possesses a good convergence performance.

GR with LMS Beamformer. In the case when there are inte-
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rfering signals jointly with the received signal at the GR input,
the LMS algorithm can be used at the GR output to cancel the
interference. The structure of GR with LMS beamformer is
shown in Fig.2. LMS beamformer cancels the interference co-
mponent at the GR output using the model signal generated by
GR MSG.

] MS
o B g
& =TS
i e | ] ™S
-_ _' algoritl_)m
[ s bearrformer | %% |4

Figure 2. GR with LM S beamformer

Process forming at the GR output when the interference is
taken into consideration is given by

ZGR

M
Z{S‘ [KISmoq, [K1 =21 [K1& [K] — 1 [KT + 7 [K] —&PLKT}

k=0i=1

N-1

(16)
where |;[k] isthe interfering signal, Ii2[k] isthe interfering sig-

nal energy. The term —2Ii[k]§i[k]—li2[k] in (16) indicates an
interaction between the interference and noise that deteriorates
the GR performance.

In GR with LM S beamformer, the reference signal of LMS
beamforming algorithm d[K] = S,Znod[k] should be equivalent to
the squared model signal at the GR MSG output due to the
fact that the energy of the information signal is formed at the
GR output. According to (4), (12), and (13), we can write

d[K] = StoalK] (17)

Z 6Kl = W KIZ gr[K] ; (18)
€'[Kl = W [KIZ gr[K] - Soal K] (19)
W[k +1] = W[K] + 2 €' [K]Z or[K] . (20)

Thus, the process forming at the GR output with LM S beam-
former takesthe form

LMS

N-1
Zgno =Y WMKIZgr[K]
k=0

N-1
= > Wk -1+ { W[k -1Z & [k 1]
k=0
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—Stoalk—1}Z grlk—10}" Z oK1} -

The optimal weight vector obtained at the sample sizek -1
can be presented as

(21)

Wk -1 = W[K] =& '[KIp[K] =® [k -Up[k-1] ,  (22)

where Z[K] :ZGR[k]ZgR[k] is the autocorrelation matrix of
the decision test statisticsZ gz at the GR output, and p[k] =

ZGR[k]Sﬁmd[k] =Z sr[K]d[K] is the correlation matrix betwe-
en the decision statistics at the GR output and the LM S refere-
nce signal, respectively. Equation (22) is satisfied under the
condition that the received signa is not varied fromk —1to k
samples, i.e. Z gg[K]=Z gr[k-1] .

Subsgtituting (22) into (21), we obtain

LMS

N-1 N-1
Zen® =Y WKIZ gr[K] = > {{#[KIp[kT} " Z cr[KI}
k=0 k=0

1

N=
= > {{Z rIKIZER[K]} Z cr[KISHoalKI} 7 Z crIK]
k=0

N-1 N-1
= Shodlkl =D S7K] . (23)
k=0 k=0

Therefore, we can see that the interference plus noise compo-
nent in (16) is cancelled by the LM S beamformer and finally
the GR output with LM S beamformer can be approximated by
the decision test statistics defined in (3).

B. RLSAlgorithm

General Statements. The convergence of the LMS algorithm
depends on the eigenvalue of the correlation matrix #[k] .If the

correlation matrix Z[k] has a wide range of eigenvalues, the al-

gorithm converges slowly. The RLS algorithm is one of set of
the algorithms that can improve the convergence performance
by updating the weight vector based on MM SE criterion and
Newton’s method. The Newton's method is known as the gra-
dient search method used to define the optimal weight vector
by searching the performance surface which is defined with
respect to an independent parameter [34]. This parameter is
usually specified to be the MSE between the output and input
in the adaptive signal processing area.

The common feature between the steepest descent method
and the Newton’'s method is that both of them are the gradient
searching methods and approach a direction of the optimal we-
ight value by searching the performance surface. Newton's
method updates the direction of searching in such away that it
points to the optimal weight vector forever, while the steepest
descent indicates a negative direction of the gradient vector.
Because of this, the RLS algorithm exhibits extremely fast co-
nvergence compared with LMS agorithm. However, this be-
nefit leads us to increasing the computational cost.

RLS is realized by replacing the step gradient size xz in (23)

by the gain matrix & “[k] which is the inverse with respect to
the matrix #[k] . Thus, the recursive equation for updating the
weight vector can be defined as[29]
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W[k +1] = W[K] + 2 [K]e*[K]SK] (24)

where®[K] is given by

k .
R[K] = yRIk-1+SKIS"[K]= > /9IS i1, (29)
i=0

wherey is called the forgetting factor and intended to ensure
that the data in the distant past are forgotten in order to allow
the beamformer to follow the statistical variations of the obse-
rvation data. The forgetting factor y is a positive constant that
should be chosen within the limits of the interval 0< y <1.

We obtain the following recursive equation
RK =y &R k-1 -qlkISKI® k-1},  (26)

using the Woodbury identity [29] with the purpose to derive
an inverse of the covariance matrix £[k] , whereq[k] is the ga-

in vector that can be calculated as[35]

y R k-15K]

_ _ -1
M= g ~F M- @)

Thus, (24) can be rewritten as
W[k +1] = W[k] +q[k]e"[K] . (28)

|l11'
RS
| algorithm

W

E

RLS beamformer

Figure 3. GR with RLS beamformer

GR with RLS Beamformer. The structure of GR employing
RLS algorithm is presented in Fig. 3. Similar to the case of
LMS agorithm, the RLS beamformer is applied at the GR out-
put for interference cancellation. The beamformer input K]
given by (24)—«27) can be considered as the GR output
Z or[K] . Simultaneously, the error in (28) is defined by (18)
because the reference signal is the squared model signal
anod[k] generated by the GR MSG. Thus, the process at the

GR output under employment of the RLS beamformer can be
presented in the following form:
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N-1
Z&RTK =Y WHKIZ grK]
k=0

N-1
= > {Wk-1+q[k-1]
k=0

}{WIk-1Z ga[K] - Shoalk -1} }" ZrlKl . (29)

where the gain vector q[k] is defined by the GR output Z ;5 [K]

(see (27)) and the inverse matrix £ '[k] is obtained based on

(26). Similar to (22) and (23), we can find that the interference
plus noise component in (16) can be suppressed by the RLS
beamformer and the final GR output with RLS beamformer is

close to the information signal energy zsjsz[k] .

C. SMI Algorithm

General Satements. SMI algorithm is another technique to
improve the convergence performance when the eigenvalues
of the correlation matrix Z[K] are widespread. The main prin-

ciple of SMI agorithm is to inverse the sample matrix directly
to obtain the optimal weight vector. In practice, the signals are
unknown and the environment changes frequently. Thus, a
block adaptive approach updating the weight vector to define
new requirements imposed by varying conditions can be used
to deliver a better performance in comparison with continuous
approach [36].

The stability of the SMI agorithm depends on the ability to
invert the correlation matrix [k] that may leads to computati-

onal complexities which are not easily overcome. However,
SMI algorithm is a good choice in the case when high require-
ments of convergence performance are needed under the dis-
continuous varying environment. If a priori knowledge about
information signal parameters is known the optimum weights
can be determined directly based on the Wiener solution of
(12). This approach is just the SMI algorithm or, namely, the
direct matrix inverse (DMI).

When the input signal parameters are varied, the received
data can be divided into several blocks that have stable spatial
information and the optimal weights can be defined based on
these blocks. This method is called the block adaptive method
[36]. The block adaptive method updates the weight vector pe-
riodically by obtaining estimations of the covariance matrix
R[k] and correlation matrix p[k] within the limits of the block

sizel, — L, considered as the observation interval. The estima-
tions can be presented in the following form:

~ &
%zzzGR[l]ZgR[I]l
I=ly

Ly
b= dNZcrll].

|:L1

(30)

Then, the weight vector can be estimated by the Wiener so-
[ution within the limits of the observation interval N, — N;

WP, =R (31)
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SMI agorithm has the best convergence performance [29].Ho-
wever, it is not the best algorithm due to the limitations in co-
mputational complexity.

GR with SMI Beamformer. As we stated before, the SMI
algorithm can also be applied under the GR employment. Fi-
gure 4 presents the GR flowchart with SMI beamformer. The
beamformer input in (30) is the GR output Z 5z [1] , and the es-
timation correlation matrix p based on (17) and (30) can be
written in the following form:

Np
p= Shodll1Zerl - (32)

|:N1

‘M
| SMI
| algorithm

| =

SMI beamformer

Wor

Figure 4. GR with SMI beamformer
Taking into consideration (16) and (31) we can write:

L2 “
ZZK=D W | Zegll]
|:L1

L, Ly
=21 PI" Zarll]=D Shalll -

|=L1 |:L1

(33)

The error information is not used to update the weight vectors
for this structure. Thisis the main difference between the SM1I
beamformer and the LM S and RL S adaptive beamformers.The
observation interval L, — L, is used to provide a periodical de-

termination of the weights if a nonstationary environment is
anticipated.

IV. DOA ESTIMATION BY GR

DOA is an important parameter in the array signal process-
ing. For smart antenna system, for example, in the wireless
mobile communications, the DOA of signal is required for be-
amforming technique to form a beam in desired direction tak-
ing into account the multipath signal components.By this way,
the signal-to-interference-plus-noise ratio (SINR) is improved
by producing nulls towards the interfering signals.

In practice, DOA is usualy unknown and should be estima-
ted a priori based on the spatial information in the data receiv-
ed by antenna array. The performance of DOA estimation al-
gorithm depends on many parameters such as the number of
signals and their spatial distribution, the number of array ele-
ments and their spatial distance, the SINR, etc. The subspace
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algorithms, such as MUSIC and ESPRIT, are widely used and
recognized as the effective estimation algorithms under differ-
ent conditions.

The main idea of the subspace algorithms is to estimate the
DOA by utilizing the characteristics of the noise and signal su-
bspace derived from eigenvalue decomposition. Here, MUSIC
and ESPRIT algorithms are employed by GR for DOA estima-
tion. The GR flowchart with the DOA estimator is shown in
Fig. 5. The DOA of signa is estimated at the PF output and is
provided to the GR M SG with the purpose to generate the mo-
del signal.

]

Figure 5. GR with DOA estimator

A. MUSC Algorithm

MUSIC agorithm is a high angular resolution technique for
DOA estimation based on the eigenstructure of input covarian-
ce matrix and the decomposition of covariance matrix into two
orthogonal matrices, i.e. the signal subspace and noise subspa-
ce. The main principle of MUSIC algorithm is to estimate the
DOA by exploiting the orthogonal feature between the noise
subspace and the signal subspace when the number of signals
is less than the number of antenna array elements and the noi-
se in each channdl is uncorrelated and independent. The high
resolution of MUSI C algorithm depends on the accuracy of ar-
ray and requires a precise calibration of array.

The uniform linear array (ULA) is applied as an example to
illustrate the algorithm procedure. If N is the number of sig-
nals, M is the number of antenna array elements, as shown in
[7], the array covariance matrix can be determined in the follo-
wing form

R, =AR A +52 ’ (39)

where o2 is the noise variance, | istheM x M identity matrix;

A istheM x N antenna array steering matrix or antenna array
manifold

A =[(6,),5(6,),....560\)] ;

R «x isthe N x N received signal correlation matrix within the
limit of the considered interval [0, N —1]

(35

Ry = XX (36)

where X ={x[K],X,[K],...,xy[K]} " isthe received discrete-ti-
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me signal matrix and 4,,6,,...,0 denote the signal angles, T

denotes the transpose matrix.
By the eigenvalue decomposition, the signal correlation ma-
trix R 4y has N eigenvalues and eigenvectors associated with

signals andM — N eigenvalues and eigenvectors associated
with the noise, respectively. Thus, the noise and signal eigen-
vector subspaces can be determined as

Vw =[V1Va VNl (37)

Vx =[Vm-naVml] - (38)

Therefore, we can obtain the DOA, i.e. 6,,0,,...,6) , by proje-
cting the array steering vector S,y (6) onto V,,, for al values

of @, and then the N values of 8 can be found if the projection
iszero[7]

2
”s” (an)vW“ -0, n=01..N-1 (39)
where||- ||2 is the square of two matrix norms.

Obviously, the steering vector s(6,,) of an arbitrary incident
signal is orthogonal to the noise subspace. Thus, the MUSIC
pseudo spectrum can be given by [7]

1

H H ' (40)
s7 (O)Vi Vw S(0)

GM usiCc (‘9) =

where| - | means the absolute value. By this way, the DOA of

the signal can be estimated by searching the spectrum peak in
the angular spectrum produced by (40). For GR with DOA es-
timator, the DOA of the desired signal is provided by MUSIC
algorithm applied to GR MSG with the purpose to generate
the model signal (see Fig. 5).

B. ESPIRIT Algorithm

The MUSIC algorithm involves an exhaustive search thro-
ugh all possible steering vectors to estimate the DOA with
high computational complexity. ESPRIT is a subspace DOA
estimation algorithm that can greatly reduce the computational
cost and storage requirements [7].The main principle of
ESPRIT agorithm is to divide the original antenna array into
two subarrays with a trandglation invariance structure, and then
a difference of the signal subspaces spanned by the data vect-
ors associated with the subarrays will only be a rotational in-
variance factor containing the DOA information, which is exp-
loited for the DOA estimation [37].

Consider ULA consisting of M elements. Two identical an-
tenna subarrays have i elements thati < M for antenna subar-
rays that are not overlap 2i =M . The number of signals N is
less than M. As was shown in [7], [37], the received data vec-
tors of two antenna subarrays at the same instant of time are
given by

Zi=AX+W,, 4y
® =diag{ exp[ jvdsing,]---exp[ jvdsindy]} , (43)
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whereZ, and Z, are thei x1received data vectors of antenna
subarrays; A;and A, arei x N subarray manifold; W, and W,
are thei x 1 noise signal vectors of the subarrays; d is the dista-
nce between the antenna array elements; and v is the wave nu-
mber. Based on (41)—43) we can see that thereis only a phase
differenceexp[ j vd sinédy, ] between the received signals of two
antenna subarrays, which is defined as rotational invariance.
Thus, if we know the diagonal matrix ® given by (43) we can
then estimate the target signal DOA.

Combining two data vectors (41) and (42) to form the comp-
lete received data vector of ULA, we obtain

Ay

S

The covariance matrix in (44) has N eigenvectors associated
with signals and 2i — N eigenvectors associated with the noise.
The subspace spanned by the column vectors of antenna array
manifold and the signal subspace are orthogonal to the noise
subspace, and the antenna array manifold isafull column rank
meatrix. By the uniqueness of orthogonal space, the subspace
spanned by the column vectors of antenna array manifold is
the same as the signal subspace. Thus, a unique N x N nonsin-
gular matrix T satisfies the following equation

vl Rl

Vx,
whereVy is the signal subspace; Vy andVy, are the signal

}:AX+W. (44)

AT -
A,®T |’ (49)

subspaces of the antenna sub arrays.
Then we can find that

Vy, =Vy, ¥, (46)
where ¥ is the rotational matrix given by
v =T'oT . (47)

Equation (47) is considered as an eigenvalue decomposition of
the rotational matrix ¥ . If we know the matrix ¥, we can obt-
ain the matrix ® and enable to estimate the DOA of each sig-
nal.

The least square (LS) and the total least square (TLS) meth-
ods are commonly used to obtain the rotational matrix ¥ . Bas-
ed on these two methods, there are two ESPRIT algorithms,
i.e. LSESPRIT algorithm and TLS-ESPRIT agorithm. After
obtaining the matrix ¥ the eigenvalues 1y, can be defined and

equal to the diagonal elements of the matrix such that

Ay = exp[ jvdsing,],

: (48)
Ay, =exp[jvdsingy].
Then we can estimate DOA using the following equation
0- sin‘l{—arg(ﬂ“’)} . (49)
vd
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The ESPRIT DOA estimation algorithm does not require
scanning over all possible directions. Because of this, the
DOA of signal can be obtained without high computational ef-
forts and large size of memory by the ESPRIT algorithm. Ho-
wever, there is a requirement about the array structure, for ex-
ample, the antenna array should have at least two identical an-
tenna subarrays.

V. SIMULATION AND DISCUSSION

Under simulation, we consider the antenna with ULA 8 ele-
ments and half signal wavelength distance. There are three in-
cident signals. The first signal is the information signal arriv-

ing at10°, the second and third signals are interfering signals

arriving at — 60° and 60°, respectively. These angles may be as-
sumed to be unknown and estimated by DOA estimation
algorithms. The interference-to-noise ratio (INR) is kept const-
ant and equal to5dB . All signals are set as Gaussian random
seguences with zero mean.

We compare GR and correlation receiver that is optimal in
the Neyman-Pearson sense (NP receiver) by performance und-
er identical input conditions. Figure 6 shows a comparison of

SNR=104B

i| ——— R background noise
a yes signal

GR output

a0 100 180 200

250
time
SHR=104B

300 380 400 450 600

I I I I
1| = NP receiver noise component
a yes signal

MNP output

Figure 6. GR and NP receiver outputs; no interference

GR and NP receiver output signal modulus when there are no
interfering signals and the input SNR is equal t010dB . The
sample size N is equal to 10000. As follows from Fig. 6, the
advantage of GR over NP receiver is evident. The output SNRs
for GR and NP receiver are approximately equal to 3.52 dB
and -2.4dB.

Comparison of the output SNR versus the input SNR for GR
and NP receiver is presented in Fig. 7. Aswas discussin [8]—
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-20

30
ES
Input SNR(JE)

Figure 7. The output SNR versus the input SNR for GR and NP
receiver; no interference

[14], we can see when SNR is approximately less than—-1dB ,
the GR performance is low in comparison with the NP receiv-
er one. Owing to selection of input conditions, this case does
not correspond to receiver performance employed in practice
because the probability of detection in this caseislessthan 0.1
and this is not practical case. In practice, the GR overcomes
NP receiver by detection performance [15] 26].

If the DOA of incident signals is unknown, the MUSIC and
ESPRIT algorithm are employed for DOA estimation. Two in-
terfering signals are considered and the DOA of all signalsis
estimated by two algorithms. The MUSIC angular spectrum
and the estimated DOA of signals by ESPRIT algorithm are
shown in Fig. 8 at the input SNR = 5dB . Both algorithms have
good resolution for DOA estimation.

SNR=5dB

Specrurn(dB)

-0 0
Azimuth{Deg)

20 40

Figure 8. The estimated DOA of signals: SNR=5dB
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Figure 9. RMSE versus the input SNR

For details of performance analysis, the root-mean square er-
ror (RMSE) criterion [38]

Z

Mz

-1

(9 0k| ’

T

=0 i=!

H

(50)

can be employed to assess and compare the DOA estimation
of different algorithms, where N is the sample size, M is the

number of incident signals, &, is the ith DOA and ék,i denotes

the ith estimated DOA in the kth experiment. The RMSE ver-
sus the input SNR is demonstrated in Fig. 9. We see that the
MUSIC algorithm has a higher resolution in comparison with
ESPRIT algorithm at the low SNR values. At the high SNR, a
difference between MUSIC and ESPRIT algorithmsis negligi-
ble and both algorithms can be employed by GR in MIMO wi-
reless communication system to generate the model signal in a
general case.

Array pattern

I I I
—&— GR with LM3
|| —— GR with ALS
—#— GR with Skl

Gain

Azimuth(Deg)
Figure 10. GR array pattern with non-blind beamforming

Knowledge of signal DOA gives us an opportunity to emp-
loy the non-blind beamforming algorithms such asLMS, RLS,
and SMI based on the reference signal generated by GR M SG.
In the course of simulation, the forgetting factor of RLS is set
equal to 0.99 and the block observation interval of SMI algor-
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ithmis[O,N —1] . The step size in LM S agorithm is chosen by
(14) applying the variable step size approach based on SNR.

Figure 10 presents the antenna array pattern at the GR output
with non-blind beamformer when the SINR is equal to 10 dB.
At the target return signal direction equal t010°, the beamfor-
mer can form a high gain. The nullsin the array pattern denote
the direction of vectors of the interfering components owing to
the GR processing.

Output SINR versus input SINR of GR
50 T T

T

—6— GR with LMZ
NP with LMS

40 H —— GR with RLS

—&— GR with SMI

—5— GR without non-blind beamformer
NP without non-blind beamfarmer

30

Onput SINR(IE)

- | I 1 1
E-1 20

Input SINR(HE])
Figure 11. The output SINR versus the input SINR

The output SINR as a function of the input SINR for GR and
NP receiver with and without the LM S beamformer is presen-
ted in Fig.11. As we can see, a superiority of GR with non-
blind beamforming algorithms in comparison with NP receiver
is evident. Additionally, Fig. 11 presents the performance of
interference cancellation by GR with non-blind beamforming
algorithms in the term of the output SINR versus the input
SNR. RLS and SMI algorithms have the better performance
under interference cancelation in comparison with LMS algo-
rithm.

(a )GR output without LMS beamforner, SINR=5dE

200
= GR background hoige
G et e B R i e ey a yes signal
= H H
= H H H
S 100 F---q-mdeommst e s s et e e s D e
{12
o
50
50 100 150 200 250 300 350 400 450 500
time
[MGR output with LMS beamformer, SINR=548
200 T
= GR background hioige
BB i it i s B B N a yes signal
L ; :
=
E T 11 T e [ e I SRR
15 <]
«
L 1 R T

ati}

100 180 200 250

time

300 350 400 450 500

Figure 12. GR output with interfering signals: @) without beamformer
and b) with beamformer

Figure 12 shows the GR output without LM S beamformer,
Fig. 12a, and with LM S beamformer, Fig. 12b, when the inter-
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fering signals are present and the SNR is equal to5dB . The
output SNR of GR with LMS beamformer is13.98dB while
the output SNR of GR without LM S beamformer is1.94dB .

500

(a)MP output without LMS beamformer, SINR=5dB

— NP background noise
3 yes signal

400

________

300 -

200

NP output

100

100

150 200 250

time

(bJMP output with LMS bearnformer, SINR=5dE

300 350 400 450 500

120

— MNP background noise
a yes signal

100

MNP output

0 a0 100 180 200 250

time

300 350 400 450 500

Figure 13. NP receiver output with interfering signals: a) without
beamformer and b) with beamformer

Figure 13 presents the NP receiver output without LM S bea-
mformer, Fig. 13a, and with LM S beamformer, Fig. 13b, when
the interfering signals are present and the SINR is equal to 5dB
The output SNR of NP receiver with LMS beamformer is equ-
al t03.98dB and the output SNR of NP receiver without LMS
beamformer is—11.2dB . Under comparison of Figs.12 and 13,
the advantage of GR with LM S beamformer over the NP rece-
iver with LM S beamformer is evident.

V1. CONCLUSIONS

The GR with non-blind beamforming algorithms, namely,
LMS, RLS, and SMI algorithms and DOA estimation proce-
dures is investigated. LMS, RLS and SMI non-beamforming
algorithms are employed by GR with the purpose to cancel
interference. MUSIC and ESPRIT algorithms are subspace
DOA estimation algorithms employed by GR to provide the
GR M SG output with the required DOA information. Compa-
rative analysis is carried out between the NP receiver and GR
under the same initial conditions and demonstrates an applica
bility of the proposed non-blind beamforming and DOA esti-
mation algorithms in GR that allows us to cancel interference.
A great superiority of GR employment in MIMO wireless co-
mmunication systems is evident under comparison between
the GR and NP receiver in terms of the output SNR.
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