МНОГОКРИТЕРИАЛЬНОЙ ВЫБОР ПАРАМЕТРОВ ПОЛЗУНА НА СТАДИИ ПРОЕКТИРОВАНИЯ КУЗНЕЧНОПРЕССОВОГО ОБОРУДОВАНИЯ С ПОМОЩЬЮ ТЕХНОЛОГИИ ОПТИМИЗАЦИИ IOSO

Друтько К.И., Гурвич Ю.А.

In this article the method of the optimization of the constructive parameters of the punch of forge equipment by the multidimensional optimization technology IOSO is considered.

В работе [1] представлена методика многокритериальной оптимизации параметров ползуна пресса с помощью метода сеток. Эта методика обладает следующими недостатками: при большом шаге изменения параметров ползуна можно пропустить оптимальные значения параметров, а при малом шаге — требуется большое количество итераций, что существенно увеличивает время расчета; не позволяет задать критериальные ограничения, весовые коэффициенты и построить область Пареторешений. Поэтому разработка новой методики многокритериальной оптимизации параметров ползуна, свободной от указанных недостатков, является актуальной, теоретически и практически значимой.

В данной работе впервые разработана методика оптимизации конструктивных параметров ползуна кузнечнопрессового оборудования с помощью технологии **IOSO**. Эта методика дает возможность задать: критериальные ограничения, пределы изменения входных параметров и критериев; весовые коэффициенты; предельное время счета; точность решения и начальные точки алгоритма решения. Гарантировано определить оптимальные значения и построить область Парето-решений (с заданным количеством точек на стадии проектирования) и существенно снизить время расчета.

Постановка задачи: к ползуну пресса в форме параллелепипеда весом \mathbf{P} и шириной \mathbf{b} через невесомую консоль приложена сила \mathbf{Q} , которую можно перемещать по консоли. Коэффициент трения между ползуном и направляющими \mathbf{f} (все остальные размеры показаны на рис.1.). Произвести расчет оптимальных параметров ползуна по критериям (причем, критерии взяты из [1]):

$$W_{1} = W_{L} = \left(1 - \frac{L \cdot 2f \cdot \left(1 + \frac{b}{d}\right)}{h \cdot \left(1 + \frac{P}{Q}\right)}\right) \cdot 100\% \rightarrow \max,$$

$$W_{2} = W_{C} = \left(1 - \frac{C \cdot 2f \cdot \left(1 + \frac{d}{b}\right)}{h \cdot \left(1 + \frac{P}{Q}\right)}\right) \cdot 100\% \rightarrow \max,$$

$$W_{3} = (W_{L} + W_{C})/2 \rightarrow \max,$$

$$(1)$$

$$W_4 = \sqrt{W_L \cdot W_C} \rightarrow \text{max}$$
.

Отрицательные значения критериев W1 и W2 соответствуют заклиниванию ползуна в направляющих, а нулевые значения показывают, что точка приложения силы Q совпадает с границей гарантированного скольжения. Критерии W1 и W2 имеют практический смысл только при положительных значениях, зададим на них ограничения W1 и W2 > 5.

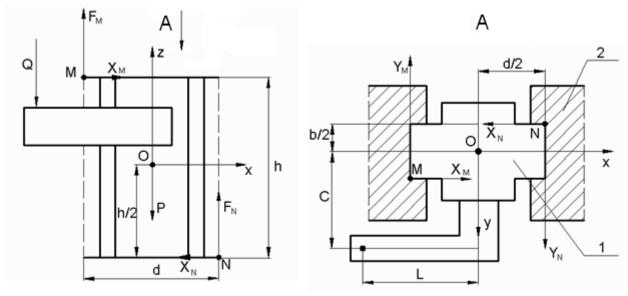


Рис. 1. Ползун пресса: 1 – ползун; 2 – направляющие

Зададим входные конструктивные параметры для оптимизации и пределы их изменений:

- ✓ Ширина ползуна:b v [0.2;0.8] м;
- ✓ Длина ползуна: **d** v [0.3;0.9] м;
- ✓ Высота ползуна: h v [0.15;1.0] м;
- ✓ Коэффициент трения: f v [0.1;0.7];
- ✓ Отношение веса ползуна к прикладываемой силе: P/Q v [0.01;0.5].

Зададим постоянные значения координаты точки приложения силы по оси X и Y: \mathbf{C} =1.25 м, \mathbf{L} =1.15 м.

Программная реализация.

• Реализуем математическую модель ползуна пресса (система критериев (1)) в программе **MS Excel** (рис.2) в виде формул, которые начинаются со знака равенства "=" (2).

(2)

Формула критерия W1:

$$=(1-(D12*2*D9*(1+D6/D7))/(D8*(1+D10)))*100$$
.

Формула критерия W2:

$$=(1-(D11*2*D9*(1+D7/D6))/(D8*(1+D10)))*100$$
.

Формула критерия W3:

=(D14+D15)/2.

=КОРЕНЬ(D14*D15).

Ca	□ n - (n -	Ŧ	Математическая модель пресса -	Microsoft Excel		_ = ×
	Главная В	Вставка Разметк	а страницы Формулы Данные Р	ецензирование Вид	Autodesk Vaul	t 🕡 – 🗖 X
Встав	Саlі Ж вить У	<i>К</i> Ч ¬ А	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	З Вставить ▼ З Удалить ▼	Сортировка Най	ти и лить ▼
	D14	▼ (• f _x	=(1-(D12*2*D9*(1+D6/D7))/(D8*(1+D10))))*100		*
	Α	В	С	D	Е	F
4						
5			Входные параметры	Значение		
6			b	0.2		
7			d	0.9		
8			h	1		
9			f	0.1		
10			P/Q	0.5		
11			С	1.25		
12			L	1.15		
13			Выходные параметры	Значение		
14			W1	81.2592593		
15			W2	8.33333333		
16			W3	44.7962963		
17			W4	26.0223076		
111	н Лист1 /	ист2 / Лист3 / 🕏				→ 0
Готово				=	□ □ 160%	

Рис.2. Окно математической модели ползуна в программе MS Excel

• Интегрируем математическую модель ползуна пресса в программе MS Excel с программным комплексом IOSO (рис.3), который позволяет осуществить обмен данными с этой моделью посредством текстовых файлов ввода и вывода данных: в текстовый файл ввода данных in (рис.3-4) записываются значения входных параметров (b, d, h, f, P/Q), а из текстового файла вывода данных out происходит считывание значений выходных критериев (W1, W2, W3, W4).

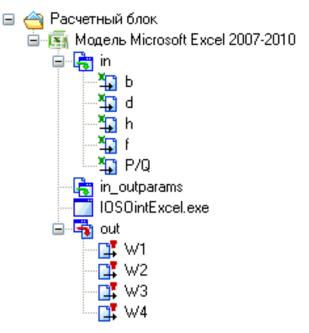


Рис.3. Структурное дерево проекта оптимизации в программе IOSO

Рис.4. Схема проекта оптимизации ползуна пресса

- Программный комплекс **IOSO** в автоматическом режиме генерирует значения входных параметров и записывает их в файл **in**, затем запускает на выполнение математическую модель ползуна пресса, которая записывает рассчитанные значения критериев в файл **out** (рис.4). Далее происходит считывание файла **out**, производится анализ значений полученных критериев и принимается решение об изменении значений входных параметров. Такой итерационный процесс продолжается до тех пор, пока не будут определены оптимальные параметры ползуна пресса.
- Поиск оптимальных решений и построение области Парето осуществлялся многокритериальной версией метода непрямой оптимизации на основе самоорганизации **IOSO**, который позволяет решать задачи с числом критериев до 20 и с числом входных параметров до 100.

Полученные результаты. Оптимальные значения конструктивных параметров ползуна пресса найдены через 200 итераций, что в 500 раз быстрее, чем методом сеток [1]. Результатом оптимизации является множество точек Парето-решений, представленное в виде табличных и графических зависимостей. Графики могут быть построены в зависимости от любых переменных проекта. Инженер-разработчик должен выбирать решение, лежащее только в области Парето-решений, иначе оно будет не оптимальным. На рис.5-8 представлены некоторые графические зависимости значений конструктивных параметров и критериев ползуна кузнечнопрессового оборудования:

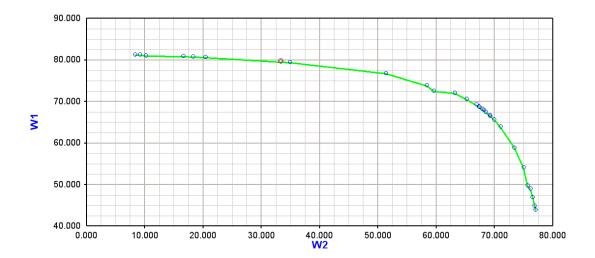


Рис.5. Парето-оптимальные решения в координатах W1(W2)

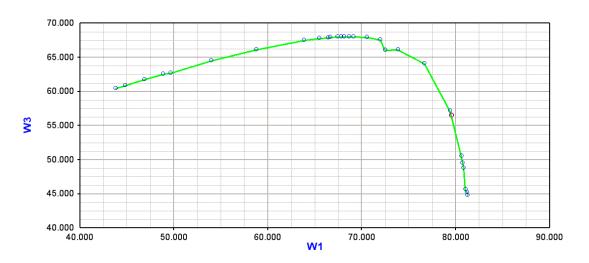


Рис.6. Парето-оптимальные решения в координатах W3(W1)

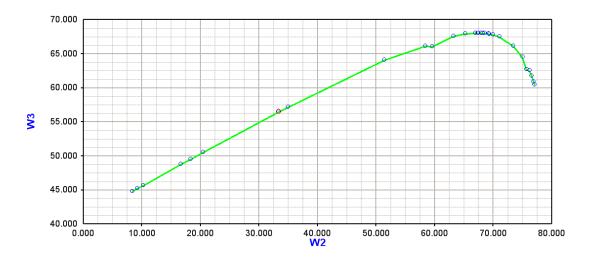


Рис.7. Парето-оптимальные решения в координатах W3(W2)

W4	W3	W2	W1	P/Q	f	h	d	b	№ обр.
26.0223076192	44.7962962963	8.3333333333	81.2592592593	0.50	0.10	1.00	0.90	0.20	141
27.2859962803	45.1938202247	9.1666666667	81.2209737828	0.50	0.10	1.00	0.89	0.20	180
28.7955271947	45.6250482141	10.2348993289	81.0151970994	0.49	0.10	1.00	0.87	0.20	142
36.7045259092	48.7500000000	16.666666667	80.8333333333	0.50	0.10	1.00	0.80	0.20	157
38.4726194864	49.5341880342	18.3333333333	80.7350427350	0.50	0.10	1.00	0.78	0.20	162
40.6040102908	50.5284775465	20.4545454545	80.6024096386	0.50	0.10	1.00	0.83	0.22	213
51.4961343389	56.444444444	33.3333333333	79.555555556	0.50	0.10	1.00	0.90	0.30	92
52.6708027352	57.1657108722	34.9462365591	79.3851851852	0.50	0.10	1.00	0.90	0.31	175
62.7829554968	64.0388494878	51.4184397163	76.6592592593	0.50	0.10	1.00	0.90	0.47	126
65.6557469724	66.1099797533	58.3735521236	73.8464073830	0.48	0.10	1.00	0.82	0.56	120
65.7387940247	66.0525645921	59.6219931271	72.4831360570	0.50	0.10	0.97	0.81	0.60	225
67.4404453143	67.5838093483	63.1840796020	71.9835390947	0.50	0.10	1.00	0.81	0.67	147
67.8379366386	67.8900748039	65.2298850575	70.5502645503	0.50	0.10	1.00	0.63	0.58	70
67.9983071096	68.0075075075	66.8888888889	69.1261261261	0.50	0.10	1.00	0.74	0.75	200
68.0107562299	68.0138888889	67.3611111111	68.666666667	0.50	0.10	1.00	0.69	0.72	190
68.0110488466	68.0138009050	67.4019607843	68.6256410256	0.50	0.10	1.00	0.65	0.68	98
68.0035471617	68.0036109774	67.9104477612	68.0967741935	0.50	0.10	1.00	0.62	0.67	96
67.9906410672	67.9909090909	68.1818181818	67.8000000000	0.50	0.10	1.00	0.50	0.55	163
67.9653597317	67.9675925926	68.5185185185	67.4166666667	0.50	0.10	1.00	0.64	0.72	54
67.8851875803	67.8970588235	69.1666666667	66.6274509804	0.50	0.10	1.00	0.68	0.80	169
67.8573043718	67.8730158730	69.3333333333	66.4126984127	0.50	0.10	1.00	0.63	0.75	139
67.7126280689	67.7500000000	70.0000000000	65.5000000000	0.50	0.10	1.00	0.64	0.80	47
67.3588750286	67.4548872180	71.0526315789	63.8571428571	0.50	0.10	1.00	0.56	0.76	48
65.7081433611	66.1176413255	73.4649122807	58.7703703704	0.50	0.10	1.00	0.45	0.76	119
63.6396103068	64.5000000000	75.0000000000	54.0000000000	0.50	0.10	1.00	0.40	0.80	154
61.3078727771	62.6730265619	75.6827534605	49.6632996633	0.50	0.10	0.99	0.32	0.72	170
61.0316944289	62.5396825397	76.1904761905	48.8888888889	0.50	0.10	1.00	0.30	0.70	52
59.8931313857	61.7105105105	76.5765765766	46.844444444	0.50	0.10	1.00	0.30	0.74	72
58.7039508564	60.8615384615	76.9230769231	44.8000000000	0.50	0.10	1.00	0.30	0.78	191
58.0907655057	60.4305555556	77.0833333333	43.7777777778	0.50	0.10	1.00	0.30	0.80	97

Рис.8. Фрагмент окна программы IOSO с таблицей Парето-решений

Заключение: Впервые разработана методика многокритериальной и многопараметрической оптимизации ползуна кузнечнопрессового оборудования с возможностью гарантированного определения оптимальных значений и построения области Парето-решений. Для этого необходимо задать: ограничения, пределы изменения входных параметров и критериев; весовые коэффициенты; предельное время счета; точность решения и начальные точки алгоритма решения.

Результаты оптимизации представлены в многочисленных графических зависимостях, которые позволяют инженеру выбрать оптимальные конструктивные параметры на стадии проектирования кузнечнопрессового оборудования. Время решения задачи оптимизации по сравнению с методом сеток в работе [1] сократилось в 500 раз.

ЛИТЕРАТУРА

- 1. Гурвич Ю.А., Бойко Б.С., Макаревич А.П., Выбор значений конструктивных параметров ползуна кузнечно-прессового оборудования, Теоретическая и прикладная механика. Мн.: БНТУ, 2011. С. 208–212.
- 2. Крагельский И.В. Трение и износ. М., «Машиностроение», 1968, –415с.