Корзун А.С., Крайник Д.А., Горбач Н.И., Гурвич Ю.А.

Белорусский национальный технический университет, Минск

НЕКОТОРЫЕ УТОЧНЕНИЯ ДЛЯ РЕШЕНИЯ ЗАДАЧИ О ДВИЖЕНИИ АРТИЛЛЕРИЙСКОГО СНАРЯДА В СОПРОТИВЛЯЮЩЕЙСЯ СРЕДЕ

В данной работе приведены уточнения: методики определения дальности полета артиллерийского снаряда; угла α , при котором дальность полета является максимальной и значения двух углов, когда снаряд попадает в одну и ту же точку.

Определение траектории полета снаряда

Движение снаряда в декартовых осях ХОУ определяется уравнениями:

Исключив из этих уравнений время t, после соответствующих преобразований получим уравнение траектории в координатной форме:

(3)

Разложив выражение в ряд Тейлора получим: (4)

Полученные слагаемые ряда Тейлора подставим в уравнение (3) вместо выражения и после соответствующих преобразований получим приближенное уравнение траектории полета снаряда:

(5)

Уравнение (5) можно представить в виде:

(6)

что позволяет определять уравнение траектории при любом значении числа слагаемых ряда Тейлора. Сравнивая уравнение (5) с известным уравнением траектории полета снаряда в безвоздушном пространстве видим, что первые два слагаемых полностью совпадают, то есть на начальном участке (восходящая ветвь) траектория близка к параболе, а затем с увеличением x (нисходящая ветвь) будет отличаться от параболы. В работе учитывались только четыре первых слагаемых ряда Тейлора, что позволило без двух последних слагаемых уравнения (5) при y=0 получить формулу для определения дальности L полета снаряда.

(7)

Как показали дальнейшие исследования и расчеты дальность полета снаряда, определенная по этой формуле, весьма завышена. Это говорит о том,

что нельзя ограничиваться в разложении функции только первыми тремя производными. Более того, дальность полета не может превышать значение, так как или отрицательного числа не существует. Поэтому дальность полета в метрах должна быть:

Определение угла α, при котором дальность полета снаряда будет максимальной. Значение S определяем по формуле (8) при и различных углах от до с шагом . Вычисления производим на ЭВМ по разработанной нами программе, результаты которых приведены в таблицах 1 и 2. Получим уравнение (8):

Таблииа 1

Начальная скорость V ₀ =800 м/с											
α, град	5°	10°	15°	20°	25°	30°					
	4433,62	7178,88	8930,28	10021,2	10633,4	10876,3					
α, град	35°	40°	45°	50°	55°	60°					
	10821,5	10519,4	10007,9	9317,24	8473,19	7498,35					
α, град	65°	70°	75°	80°	85°						

Из таблицы 1 видим, что при начальной скорости $V_0 = 800$ м/с максимальная дальность полета будет при угле от 30° до 34° .

Для более точного определения угла построим новую таблицу (табл. 2), изменяя угол наклона ствола орудия к горизонту от 30° до 34° с шагом $h=0,1^{\circ}$.

Таблица 2

30	10876,3	31	10887,32	32	10886,94	33	10875,59
30,1	10877,93	31,1	10887,78	32,1	10886,29	33,1	10873,87
30,2	10879,44	31,2	10888,14	32,2	10885,53	33,2	10872,04
30,3	10880,83	31,3	10888,38	32,3	10884,67	33,3	10870,1
30,4	10882,1	31,4	10888,51	32,4	10883,69	33,4	10868,07
30,5	10883,26	31,5	10888,53	32,5	10882,61	33,5	10865,92
30,6	10884,3	31,6	10888,43	32,6	10881,42	33,6	10863,68
30,7	10885,23	31,7	10888,22	32,7	10880,12	33,7	10861,33

Анализ таблицы 2 показал, что при $\alpha_{\text{опт}} = 31,5^{\circ}$ а $S_{\text{max}} = 10888,53$ м.

Этот угол определялся так же с использованием формулы (8). Исследовав это выражение на экстремум, было получено кубическое уравнение относительно угла α , которое было решено с помощью формулы Кардана. Значение угла α , при котором при k=0,004 с/м, , оказалось равным $34,2^{\circ}$, т.е. на больше, чем получено нами. Разницу этих значений можно объяснить тем, что при использовании формулы Кардана допускались некоторые неточности в вычислениях в результате округлений

Сравнение траектории полета снаряда, вычисленной по приближенному уравнению, с траекторией, полученной по точному уравнению Для этого построим четыре траектории полета снаряда при оптимальном угле (рис. 1). Первые три траектории вычислим по приближенному уравнению (6), а четвертую — по точному уравнению (3):

```
<u>траектория 1</u> — вычисляется по приближенному уравнению, при ; 

<u>траектория 2</u> — вычисляется по приближенному уравнению, при ; 

<u>траектория 3</u> — вычисляется по приближенному уравнению, при ; 

<u>траектория 4</u> — вычисляется по точному уравнению. 

Рисунок 1
```

Из рисунка 1 видим, точность определения дальности полета снаряда будет стремиться к значениям, полученным из уравнения (3).

Заключение: Показано, что с увеличением числа членов разложения выражения, входящего в уравнение траектории полета снаряда в ряд Тейлора, увеличивается точность определения дальности полета снаряда.