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ABSTRACT

This paper is concerned with a generalized detector (GD)
constructed based on the generalized approach to signal
processing (GASP) in noise and employed in wireless se-
nsor networks. The GD decides if an observation contains
a multidimensional signal belonging to one space or if it
contains a multidimensional signal belonging to an ortho-
gonal subspace when unknown complex Gaussian noise is
present. We evaluate the performance of the generalized
detector in both the matched and mismatched signal cases
Our results show that for constant power complex Gaussi-
an noise, if the signal is matched to the steering vector,
the GD performance outperforms the adaptive matched fi-
lter (AMF), the generalized likelihood ratio test (GLRT),
the adaptive coherence estimator (ACE), and the adaptive
beam-former orthogonal rejection test (ABORT).

KEY WORDS
Adaptive detection, adaptive signal processing, array sig-
nal processing, adaptive side-lobe blanking.

1. INTRODUCTION

In this paper, we continue to develop the GASP [1-4] un-
der specific conditions that are characteristics of wireless
sensor networks. We consider the system using multiple
antennas at both the transmitter and the receiver (sensors
and sink). We will compare the detection algorithm based
on the GASP with several other well-studied adaptive de-
tection algorithms: AMF [5], GLRT [6], ACE [7,8], and
ABORT [9]. According to the GASP, assume that we ha-

ve a set of training signals xpk = I,...,K in anN-dimen-

sional complex space, which are characterized by a cova-
riance matrix R, which is unknown to us. Although R is
unknown, we can estimate it by computing the sample co-
variance matrix X

K

X = I>kX:' (1)
k=l

where the superscript H denotes complex conjugate trans-
pose.

420-192

We also assume that there is another set of noise samples

y k , k = I,..., K in the same N-dimensional complex space

with the sample covariance matrix Y

(2)

with the same statistics R (for simplicity). It is known a

priori that a "no" signal obtains in the noise samples Yk

(the reference sample). The training signals xk and noise

samples Yk are uncorrelated. How we can do this is discu-

ssed in more detail in [2,3].

We are given another signal x belonging to the same set

of training signals. xk' which is corrupted by zero-mean

complex Gaussian noise n with statistics characterized by
R. We assume that x may contain a signal proportional to
the unit vector s, with proportionality constant a. It may
alternatively have some other disturbance proportional to

s.L' where s.Lis any vector orthogonal to s. We need to
design a detection algorithm representing a compromise
between good probability of detection for weak signals,
low probability of false alarms due to strong signals per-
pendicular to s (side-lobe signals), invariance properties,
efficient computation, etc.

This paper introduces GD under mentioned above initial
conditions. In line with the GASP, GD is based on two-
phase test, where the first test checks the hypothesis that a
signal proportional to s is present, and, if we do not reject
this hypothesis, the second test verifies detection. In doing
so, the threshold both under the first phase and under the
second phase is the same and is caused by the false alarm
probability given before and the power spectral density of
the GD background noise. Moreover, during the second
phase a decision-making rule is based on estimation of the
statistic test variance at the GD output.
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2. INITIAL PREMISES

We search for targets in the presence of jamming and noi-
se. Under designing the receiver, there is a compromise
between a low gain wide beam that covers the area to be
searched using relatively few pointing directions, versus a
narrow beam, which can have higher gain in the target di-
rection. Without high gain, the target might be obscured
by receiver noise.

We desire that the detection algorithm could have low
probability of detection for targets smaller than some de-
fined size but have a high probability of detection for tar-
gets larger than some defined size. Between these two si-
zes, there must be a transition region, within which we
can tolerate either high or low probability of detection.
The region to be searched will be "tiled" by successively
pointing the beam in various directions. The goal of the
search is not only to detect a target but also to define its
approximate direction, which is the beam pointing direc-
tion. The search must be considered unsuccessful if the ta-
rget is detected while the beam is pointing elsewhere, but
realistic antenna beams have side-lobes that are directions
with relatively high gain outside the main beam. A strong
target can sometimes trigger detection when it is located
in a side-lobe direction, therefore appearing just like a so-
mewhat weaker target in the main beam. This is a false al-
arm with system consequences not very different from re-
porting a target when there is only noise.

Since large targets are detectable with less antenna gain
than small ones, the desirable beam shape should have ad-
equately high gain in a certain defined angular region, ad-
equately low gain outside a certain somewhat larger defi-
ned angular region, and transition region in between. For
receivers adapted to jamming and other kind of interfere-
nce, the considerations are similar, but not identical. We
can no longer to know the beam shape because an adapti-
ve antenna's beam will depend in detail on interference.

When results from N antennas are available to be combin-
ed, we usually consider the target and the beam in an N-
dimensional complex space whose coordinates are the ob-
servations on the N antennas. Any hypothetical target will
engender some predicted response in the N antenna elem-
ents, thereby appearing as a point in this "antenna space".
This is so-called the target vector. Since the response of a
larger target will be increased in the same proportions in
all the antenna elements, the normalized target vector is a
function of the direction of the target in space, whereas
the length of the target vector depends also on the cross
section of the target. For observations of an actual target
corrupted by noise, the output SNR would be proportional
to the squared length of the target vector.

Most algorithms for processing observations from an an-
tenna array include a step that forms some linear combi-
nation (weighted sum) of the observations on the N anten-
nas to give one scalar value. The weights used in such Ii-

near combination can be combined into vector we call the
weight vector. It is important to recognize that a linear co-
mbination of observations from N separate antennas re-
sults in one synthetic antenna that has its own beam pat-
tern.

The most important special case is the weight vector that
would be used if the interference were spatially random,
like receiver noise. This is called the steering vector and it
is identical to a target vector for a target located at the ce-
nter of the beam. The angle between a target vector and a
steering vector in the antenna space is analogous to the
angle between a target and a beam pointing direction in 3-
D space.

3. GENERALIZED DETECTOR

The GD decides if a complex N-component test vector x

containsa signalvectors or if x containsa signals1. using

the reference noise sample y Ie' where s 1.is orthogonal to

s. A decision between two possible hypotheses is the fol-
lowing [2,3]:

. Orthogonal signal-in-noise hypothesis

{

x=as +n.
1. '

Ho:
Yo= 01;

(3)

. Signal-in-ooise hypothesis

{

x=as+o;
HI:

Yo = 01,
(4)

where 01is the zero-mean complex Gaussian noise with
statistic characterized by R, a is an unknown complex
scalar.

According to the GASP [1-4], the test statistic at the GD

output for the hypothesis HI takes the form

2 ~
X

~ H x ~ H
y

~
out S x-x x+y y

ZG = ~ > YG 'S.HX-IS
(5)

and vice versa for the hypothesis H 0 ' wheres. is the mo-
del signal (searching signal generated by the sensor anten-

na). We can define Xo == x =as 1. + 0 for the hypothesis

Ho and Xo == x = as + 0 for the hypothesis HI' respec-

tively. Then, using (3) and (4), the statistic test (5) can be
written in the following form in statistical sense: the hy-

pothesis H 0
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0111 2.H 2 . H 2 H H H
ZG =a S.LS +2a s n -2a s.Ln +nlnl -nn

and the hypothesis HI

Z OIlI 2.H H H

G = a ss + nlnl - nn .

The great peculiarity of functioning GD is the following.
At the fist phase of detection, we must satisfy the conditi-

on s. = 0, i.e., the model signal is switched off. During
the second phase, we ask whether the signal is more likely
to lie in the one-dimensional subspace s or in the comple-

mentary subspace s.L' given that we expect it to be corru-

pted by noise with covariance R, estimated by the sample
covariance matrix X. By this reason, during the second

phase, the model signal s. is switched on and we should

tend to approach that the condition s. = s would be satis-
fied.

4. ANALYTICAL PERFORMANCE

Introduce the mismatch angle B

Is.HR-ISm 12 . (8)
cos2 B = (s.HR-Is.)(s:R ISm)

In this context, the angle B refers to the angle in the whi-

tened space between the steering vector s. used in the de-

tector and the direction vector s m of the signal in the test

vector. We introduce the notation sm for the signal direc-

tion to distinguish it from the steering vector s. . Note that

the direction vector sm is aligned with the steering vector

s. under the hypothesis HI and orthogonal to the

steeringvector s. under the hypothesis HO' In general,

the direction vector sm has a component along the stee-

ring vector s. and a component along the orthogonal ve-

ctor s.L.

Explain, what we mean under the whitened space. We as-
sume that the interference observations are individual po-
ints in the N-dimensional antenna subspace. We can the-
refore identify a linear transformation that could be appli-
ed to the vectors observed on the antennas such that after
such a transformation, the transformed interference appe-
ars to be randomly distributed in N-dimensional space.
We call this process of transformation whitening the data.
The whitened data is not necessarily computed in the act-
ual wireless sensor network system. It is an artifice used
to analyze the performance of the wireless sensor network
system. Consequently, we may use the target vectors and

(6)

(7)

steering vectors in the whitened space instead of antenna
space. However, we cannot to define a search time or a
detection probability because we do not know the actual
interference. We can use the whitened space to compare
different wireless sensor network systems.

The detectable signal-to-interference-plus-noise ratio
(SINR) is determined by

(9)

Recall that a is the complex scalar in (3) and (4). In our

definition, we assume that both the direction vector sm

and the steering vector s. have unit norm, i.e.,

SHS =S.HS. =1m m .

Since the detector is "steered" in the s. direction and the

signal emanates from the s m direction, only a fraction of
the total available SINR

1 1

2 H -I
a ,smR sm

is usable by the detector. The quantity qo represents that

usable fraction, assuming R was known a priori. The
SINR lost due to signal mismatch is determined by

-
1 1

2 H R -I . 2 LI
qo=a,sm sm.smu. (10)

It is easily seen that the total available SINR equals the

sum of qo and fio'

With these definitions, we proceed with the performance
analysis for the GD. We begin by deriving an expression

for the mismatched probability of detection PD(B) , which
is defined as the probability of choosing the hypothesis
HI for a signal with the mismatch angle B

(11)

We obtain our expression for PD(B) of the GD from the

probability distribution function 10(Z) of the test statis-

tic Z all parameterized by the mismatch angle B. Recall

from(5) that we choosethe hypothesisHI when Z':t >

r G;hence
00

PD(B)= Jlo(Z)dZ.
YG

(12)

To evaluate the integral in (12), we introduce the loss fac-

tor j30 whose distribution is known and can be evaluated.
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The loss factor 130 can be determined by the following
form:

'HX-I
S sm

130 =S'HX-Ism + (S'HX-ISm)(XHX-IX)-1 S'HX-IX 12

(13)

We use a subscript 0 to indicate the mismatch angle bet-

ween the signal vector sm in the input data x and the stee-

ring vector s' , as defined in (8).

Under the hypothesis H 0' 0 =90. , and under the hypo-

thesis HI' 0 = O. . In [10], it is shown that the loss factor

130 is distributed as a complex non-central beta random

variable whose probability distribution function may be
expressed in the following form

f(f3o) = e -SePe K"f+2 (
K - N + 2

)~z=o Z (K + Z)!
z

XSoIK-N+2.N-I+z(130), 0::::;138::::;1, (14)

where fn,m(13) is the probability distribution function of

a complex central beta random variable as follows:

We can express the probability distribution function

10 (Z) in terms of the conditional probability distribution
function

1

fo(Z) = fI8(Zlf3o)'f(f3o)df3o' (16)
o

We substitute (16) into the expression for the mismatched

probability of detection PD(0) in (11) and reverse the or-
der of integration to obtain

1 OJ

PD(O) = f [jfo(Z I13o)dL]. f(13o)df3o
o YG
1

= fPD(O) 1130' f(13o)df3o '
o

where we introduce the notation PD(0) 1 130 to represent

the mismatched probability of detection for the GD condi-

tioned on 130,We evaluate PD(O)1130 in the following
form

(17)

co

PD(O) 1130 = ffo(Z I f3o)dZ
YG

YG

=1- jfo(Zlf3o)dZ (18)
-OJ

The integral on the last line of (18) can be expressed as
the cumulative distribution function of the complex non-
central F-distribution, which is expressible in many
forms. A convenient form given in [10] uses the following
finite sum expression:

1 K-N+I

( )PD(O) I130=1--" K-N+l
TK-N+I L.J mo m=O

X(To-1)mGm(';/I ) ,
To

(19)

where

To=I+Ya-f3o' (20)
2

Ope = qo ,130 ' (21)

and the function Gm(x) is defmed in terms of the incom-

plete Gamma function r( m, x) as follows:

r(m,x) -x~ xn
G (x) = = e L.J-'

m (m -I)! n=On!
(22)

In the performance examples presented below, we evalu-

ate the mismatched probability of detection PD(0) with
numerical integration techniques for the integral in (17)
along with the finite sum expressions given in (15), (19)-
(21).

The analytical expression for the probability of detection
for a matched signal is obtained by substituting 0 = 0 in-

to (17). For this case, the distribution of the loss factor 130

given by (13) reduces to the central beta density whose
probability distribution function is given in (15).

The probability of false alarm PFAfor the GD is defined
in this context as the probability of selecting the signal-in-

noise hypothesis HI when SINR=O, i.e., a = O. We ob-
tain the analytical expression for the probability of false
alarm from (17) by setting a = O. Hence,the probability

of false alarm PFAis as follows
1

PFA= fPFA 1 130./(130) df30' (23)
o
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where PFA 1 /30 is the probability of false alann conditio-

ned on the loss factor /30. Setting the condition a = 0 im-

plies the condition 8fJa=0 , and it follows that

Gm(8;0 ) =Gm(O)=1. (24)
To

After substituting (24) in (19) and using the binomial the-
orem, we obtain the following:

P 1/3
_,..-K+N-I

FA 0 - .0 .

5. COMPUTER SIMULATION RESULTS

In this section, we show performance curves for the GD
algorithm and relate it to the AMF, GLRT, ACE, and
ABORT detection algorithms. We compare the probabili-

ty of detectionfor the casewhenthe signal sm in the test

vector x is aligned with the steering vector s. (case of the
matched detection performance) and the case when the si-

gnal sm inthe test vectorx is misalignedwiththe steering

vector s. (case of the mismatched performance).

Figure 1. Detection performances versus SINR for
GD, AMF, GLRT, ABORT, and ACE.

We use the mismatch angle 8 to designate the angle bet-

ween the signal sm in the test vector x and the steering

vector s. in the whitened N-dimensional data space. All
performance curves for the GD algorithm are generated

(25)

with numerical integration techniques and independently
confirmed by Monte Carlo simulation.

The example we consider assumes a system of dimension
N =5 and K =25 training vectors, and we choose the
detection threshold for the GD test such that the average
probability of false alann in a noise only environment is

-4
PFA =10 .

Figures 1 and 2 represent the detection performances for
the AMF, ACE, GLRT, ABORT, and GD algorithms. For
independent confirmation, we also show results for the
GD from 10 000 independent Monte Carlo trials. These
simulated results are shown as circles in Figs. 1 and 2.

Figure 1, which is the matched detection performance, re-
presents a slice of the constant probability of detection

PD(8) contours at the condition cos2 8 = 1. Notice that
the ACE detector has the lower probability of detection

PD(8) than other four tests. The GD algorithm greatly
outperforms the AMF, CLRT, and ABORT detectors. If

we measure detection loss at the level equal to PD(8) =
0.5 then for the noise model considered in this work, the
AMF, GLRT, and ABORT detectors suffer about a 12 dB
loss in SINR relative to the GD. The ACE detector suffers
about 18 dB loss in SINR relative to the GD. In addition,
note that the detection performance for the GD algorithm
outperforms the detection performances for AMF, GLRT,
ABORT, and ACE detectors for all values of SINR.

Figure 2. Detection performances versus cos2() for
GD, AMF, GLRT, ABORT, and ACE.

Figure 2 represents a slice of the constant probability of

detection PD(8) contoursunder the conditionSINR=20
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2
dB. The performance at the left end of the plot cos () =
o represents signals that are orthogonal to the steering ve-

ctor s. in the whitened data space. Similarly, the perfor-

manceat the rightendof the plot cos2 () =1representssi-
gnals that are matched (or parallel) to the steering vector

s. in the whitened data space. We observe that the AMP
detector has the least mismatch discrimination capabiliti-
es, whereas the GD algorithm is most selective. Only the
ACE detector is relatively close to the GD detection per-
formance.

6. CONCLUSION

We have developed and analyzed the GD algorithm for
the considered noise model, which can be efficiently im-
plemented as part of a two-phase detector. We have de-
monstrated that assuming a constant power multivariate
Gaussian noise process, the GD algorithm has matched
signal detection performance outperforming the AMP,
GLRT, ABORT, and ACE detection algorithms. Further-
more, we have demonstrated that the GD algorithm has
the best mismatch discrimination capabilities in compari-
son with the ACE, ABORT, GLRT, and AMP detectors.
The GD algorithm provides an alternative detection stra-
tegy in the unknown multi-channel noise environment.
When faced with the tradeoff between matched signal de-
tection versus mismatched signal rejection, the GD algo-
rithm ensures the best matched signal detection performa-
nce as well as the best side-lobe rejection performance re-
lative to the AMP, GLRT, ABORT, and ACE detectors.
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