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The generalized detector (GD) can be implemented at the low signal-to-noise ratio (SNR) in cognitive 
radio (CR) systems to improve the spectrum sensing performance under correlated antenna array 
elements. The weighted GD (WGD) and the generalized likelihood ratio test for GD (GLRT-GD) are 
proposed to be used for coarse spectrum sensing when the noise power is known and unknown, 
respectively. The GD optimal detection threshold is defined based on the minimum probability of error 
criterion for various fading channels, namely, the additive white Gaussian noise (AWGN), Nakagami-m, 
and Rayleigh fading channels. The performance of the proposed algorithms are compared with the 
spectrum sensing performance of the energy detector (ED), weighted ED (WED), maximum-minimum 
eigenvalue (MME) detector, generalized likelihood ratio test for ED (GLRT-ED), matched filter (MF), 
arithmetic to geometric mean (AGM) detector, scaled largest eigenvalue (SLE) detector, moment based 
detector (MBD), covariance based detector (CBD), and others. The simulation results demonstrate 
superiority in the spectrum sensing performance of the proposed algorithms in comparison with the 
above-mentioned detectors. For example, the GLRT-GD achieves the SNR gain equal to 1.2 dB, 4.0 dB, 
and 4.5 dB in comparison with GLRT-ED, MME, and GM detectors, respectively, at the probability of false 
alarm PFA = 0.1. The WGD and GLRT-GD implementation allows us to achieve a considerable spectrum 
sensing performance improvement at small number of samples under the low SNR and the correlated 
antenna array elements.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

The spectrum scarcity problem under the rapid and huge 
growth of wireless sensor network service motivates many re-
searchers to seek for various solutions. Approximately 70–80% 
band of the primary spectrum is already assigned and exclusively 
allocated to various types of wireless communications and sen-
sor network technologies. New innovative techniques exploiting 
the available radio spectrum are required since only a part of 
the whole spectrum band is used at specified place and time [1]. 
Implementation of the cognitive radio (CR) systems allows us to 
alleviate the spectral congestion problem by opportunistic use of 
the frequency bands with the purpose to improve the efficiency of 
spectrum utilization. The CR principle encompasses several tasks 
such as the spectrum sensing, i.e., a detection of spectrum holes 
and interference avoidance, channel identification, i.e., the channel 
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state estimation and capacity prediction, transmit power control, 
and dynamic spectrum management.

Spectrum sensing is needed to define the idle frequency bands, 
within the limits of which the entire CR operation is relied on. The 
radio spectrum awareness and existence of primary users (PUs) 
are obtained by performing the spectrum sensing at the secondary 
users (SUs) or secondary access nodes. As a result, the CR sys-
tems allow the SU to use the unutilized frequency bands without 
causing harmful interference to the PU. Many PU signal detection 
techniques can be applied in spectrum sensing [1], such as the 
energy detector (ED) [2,3], generalized likelihood ratio test (GLRT) 
detector [4], matched filter [5,6], cyclostationary detector [7,8], and 
eigenvalue-based detection algorithms [9]. There is no identifica-
tion for a specific spectrum sensing technique in the related CR 
system standards (IEEE 802.22, IEEE 802.11K).

The cyclostationary detector can exploit the cyclostationary fea-
tures embedded in the PU signal even at the low signal-to-noise 
ratio (SNR) [7,8]. In the MF case, a perfect knowledge about 
the PU signal parameters, namely, the bandwidth, operating fre-
quency, modulation type and order, frame format, etc, is required 
to demodulate the received signal. The covariance-based detector 
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(CBD) exploits a difference in the statistical covariance of the re-
ceived signal, generally, in practice it is estimated through the 
sample covariance matrix, and noise [10]. The decision statistics 
of the arithmetic to geometric mean (AGM) detector, maximum-
minimum eigenvalue (MME) detector [11], energy to minimum 
eigenvalue (EME) detector [12], and scaled largest eigenvalue (SLE) 
detector [13] depend on the sample covariance matrix eigenval-
ues. The AGM test statistics is the ratio between the arithmetic 
mean and geometric mean of eigenvalues. The maximum and min-
imum eigenvalues of the PU signal covariance matrix are used to 
define the MME test statistics [11]. In the case of EME detector, 
the average power of received signal and the minimum eigen-
value of sample covariance matrix are defined to formulate the 
test statistics. MME and EME algorithms are called the blind de-
tection methods because they use only the received signal samples 
to perform detection, similar to ED. The SLE detector [13] is based 
on GLRT with the final test statistics as a ratio of the largest eigen-
value to the sum of the sample covariance matrix eigenvalues. No 
a priori knowledge concerning the noise variance is required and, 
consequently, it is robust to the noise power uncertainty. The test 
statistics of the moment based detector (MBD) is the ratio of the 
fourth absolute moment to the square second absolute moment 
of practically relevant signal constellations [14]. The probability 
of detection formula for MBD differs according to the constella-
tions, i.e., binary phase shift keying (BPSK), quadrature phase shift 
keying (QPSK), etc. For the max-min SNR based detector [15], the 
received signal is oversampled and the linear combining vector α
with the size L of oversampling factor is introduced assuming a 
known transmitter pulse shaping. The vector α is optimized to 
have two components with different SNRs for the combined sig-
nal. The ratio of the signal energy corresponding to the maximum 
and minimum SNR is considered as the test statistics.

Useful ED sensing performance analysis is presented in [16]. 
The ED spectrum sensing performance and signal detection as a 
function of the average noise power fluctuations within the limits 
of short time interval are investigated in [17] and a new ED sig-
nal detection algorithm based on the dynamic detection threshold 
is discussed. Two stages spectrum sensing architecture combining 
the ED and feature detector is presented in [18]. This idea was 
proposed by IEEE 802.22 working group. The ED with two-steps 
threshold [19] and the weighted ED (WED) [20] achieve the signif-
icant spectrum sensing performance improvement in comparison 
with the conventional ED.

The idea to employ the generalized detector (GD) for the coarse 
spectrum sensing in CR systems has been triggered by the purpose 
to improve the spectrum sensing performance at the low SNR. The 
GD based on the generalized approach to signal processing (GASP) 
in noise [21–23] represents a combination of the correlation detec-
tor and ED. A great difference between the GD and conventional 
ED is a presence of additional linear system, for example, the band 
pass filter, at the GD input. This filter can be considered as the 
source of reference noise, which does not contain the PU signal. 
The GD log-likelihood ratio test (log-LFT), based on which we can 
make a decision about the PU signal presence or absence in the 
process incoming at the SU input, demonstrates a definition of the 
jointly sufficient statistics of the mean and variance at the GD out-
put and does not require any information about the PU signal and 
its parameters [21], [22, Chapter 3]. Note, that the conventional 
correlation detector makes a decision about the PU signal pres-
ence or absence in the incoming process based on a definition 
of the log-LRT mean only. The conventional ED defines a decision 
statistics with respect to PU signal presence or absence at the SU 
input based on determination of the log-LRT variance only. Defini-
tion of the jointly sufficient statistics of the GD log-LRT mean and 
variance allows us to make accurate decision about the PU signal 
presence or absence in comparison with the conventional MF, ED, 
correlation receiver and other modern signal detection algorithms. 
Theoretically, in the ideal case, the GD can be applied to detect 
any signal, i.e., the signal with known and unknown, deterministic 
or stochastic parameters under the very low SNR. The GD imple-
mentation in wireless communications and radar sensor systems is 
discussed in [24–31] and [32–38], respectively. Investigation con-
cerning the GD employment in CR systems has been discussed in 
[39–41].

In this work with, the objective of spectrum sensing perfor-
mance improving, i.e., the PU signal detection, at the low SNR 
under the spatial correlated antenna array elements, we proposed 
two spectrum sensing algorithms, namely, the weighted GD (WGD) 
and the generalized likelihood ratio test for the GD (GLRT-GD) 
when the noise variance is known and unknown, respectively. Both 
new algorithms are the blind detection approaches because these 
algorithms use only the received signal samples for detection, and 
can be classified or considered as eigenvalue based detectors ow-
ing to their test statistics depend on the sample covariance ma-
trix eigenvalues. The simulation results confirm the effectiveness 
of implementation of the proposed algorithms in CR systems in 
comparison with WED, generalized likelihood ratio test for the ED 
(GLRT-ED), AGM, MME, EME, SLE, MBD, CBD, and max-min SNR 
detectors.

The conventional GD detection performance over different fad-
ing scenarios is not available in the related modern literature. Thus, 
the optimal GD detection threshold at the low SNR over the ad-
ditive white Gaussian noise (AWGN), Nakagami-m, and Rayleigh 
fading channels is derived based on criterion of the minimum 
probability of error.

The remainder of this paper is organized as follows. Section 2
presents a general system model discussed in this paper. Brief 
description of the conventional GD structure and decision statis-
tics are delivered in Section 3. The moment generation function 
(MGF) of partial decision statistics at the GD output is defined 
in Section 4. The proposed WGD and GLRT-GD decision statistics 
are discussed in Section 5. Definition of the GD optimal detection 
threshold for various types of fading channels is presented in Sec-
tion 6. The simulation results confirming a theoretical analysis are 
presented and discussed in Section 7. Finally, the conclusion re-
marks are made in Section 8.

2. System model for antenna array sensing

One example of the CR system is presented in Fig. 1. We as-
sume that the SU or secondary sensor node is equipped by antenna 
array with the number of elements equal to M . Each antenna array 
element receives N samples during the sensing time. The coarse 
spectrum sensing dilemma at the k-th time instant can be de-
scribed by the conventional binary hypothesis test as follows:{
H0 = zi[k] = wi[k], i = 1, . . . , M;k = 0, . . . , N − 1,

H1 = zi[k] = hi[k]s[k] + wi[k], i = 1, . . . , M;k = 0, . . . , N − 1,

(1)

where H1 is the hypothesis a “yes” PU signal; H0 is the alternative 
hypothesis; zi[k] is the discrete-time received signal at the SU or 
secondary sensor node input; wi[k] is the discrete-time circularly 
symmetric complex Gaussian noise with zero mean and variance 
σ 2

w , i.e., wi[k] ≈ CN (0, σ 2
w); hi[k] is the discrete-time channel co-

efficients obeying the circularly symmetric complex Gaussian dis-
tribution with zero mean and variance σ 2

h , i.e., hi[k] ≈ CN (0, σ 2
h ); 

and s[k] is the phase shift keying modulated signal transmitted by 
the PU with the same probability of transmission for each modu-
lated symbol, and with the average received power Es within the 
limits of the frequency band of interest. Throughout the paper, we 
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Fig. 1. Cognitive radio network and the secondary user SU with M elements of an-
tenna array.

assume that the modulated signal s[k], channel coefficients hi [k], 
and noise wi[k] are independent between each other. The channel 
coefficients hi[k] are spatially correlated between the antenna ar-
ray elements but the channel parameters are not varied during the 
sensing time. The described channel model is discussed in detail 
in [42–44].

Owing to its simplicity, the exponential matrix model is widely 
used to describe the spatial correlation between the adjacent an-
tenna array elements. The components of the antenna array ele-
ment correlation matrix R with the size M × M can be presented 
in the following form [45]:

Rij =
{

ρ i− j, i ≤ j
ρ∗

ji, i > j , i, j = 1, . . . , M, (2)

where ρ is the coefficient of spatial correlation between the ad-
jacent antenna array elements, 0 ≤ ρ ≤ 1 real values, and ρ∗

ji de-
notes the complex conjugate (ρi j = ρ∗

ji ). Obviously, (2) may be not 
an accurate model for some real-world scenarios but this is a sim-
ple single-parameter model which allows us to study the effect of 
correlation on the MIMO capacity in an explicit way and to get 
some insight. The coefficient of correlation ρ can be determined 
using the approximated cross correlation function defined in [46]

ρ = exp
{−23�2(d/λ)2}, (3)

where � is the angular spread, an important propagation param-
eter defining a distribution of multipath power of radio waves 
coming in at the receiver input from a number of azimuthal di-
rections with respect to the horizon; λ is the wavelength; and d
is the distance between the adjacent antenna array elements (an-
tenna array element spacing). The correlation matrix R of antenna 
array elements given by (2) is the symmetric Toeplitz matrix [42].

We define the N M × 1 signal vector Z that collects the all ob-
served signal samples during the sensing time using the following 
form:

Z = [z1(0), . . . , zM(0), . . . , z1(N − 1), . . . , zM(N − 1)
]T

, (4)

where T denotes a transpose. Since s[k] has an equal probability 
of transmission for each modulated symbol as we mentioned be-
fore, then the complex vector Z has the N × M dimensional joint 
complex Gaussian distribution that can be expressed as [42]:

Z =
{
CN (0,σ 2

w I), ⇒ H0

CN (0, Esσ
2
h � + σ 2

w I), ⇒ H1
(5)

where Es is the average energy of transmitted signal at the spec-
trum sensor input, and I is the MN × MN identity matrix. We 
consider a situation when the primary signaling scheme is un-
known, i.e., the PU has a total freedom of choosing the signaling 
strategy, excepting a known power within the limits of the fre-
quency band interest. Thus, the detector should be able to detect 
a presence of any possible PU signal s[k] satisfying the power and 
bandwidth constraints for robust detection.

The received signal vector Z obeys the complex Gaussian dis-
tribution with the covariance matrices Cov0 and Cov1 at the hy-
potheses H0 and H1, respectively. If zi[k] = wi[k], the received 
signals zi[k] are independent. Under the hypothesis H1, when 
zi[k] = hi[k]s[k] + wi[k] the received signals are spatially correlated. 
The covariance matrices Cov0 and Cov1 can be determined in the 
following form [3,42]:{

Cov0 = E[ZZH |H0] = σ 2
w I,

Cov1 = E[ZZH |H1] = Esσ
2
h �σ 2

w I,
(6)

where E[·] is the mathematical expectation; H denotes the Hermi-
tian conjugate (conjugate transpose); I is the MN × MN identity 
matrix; Es is the PU average energy at the SU input; � is the 
MN × MN matrix defined based on the correlation matrix R given 
by (2) [45]:

� =

⎡
⎢⎢⎢⎢⎣

R 0M · · · 0M

0M
. . .

. . .
...

...
. . .

. . . 0M

0M · · · 0M R

⎤
⎥⎥⎥⎥⎦

MN×MN

, (7)

here 0M are the M × M zero matrixes.

3. Conventional GD and related decision statistics

As we mentioned before, the GD is constructed in accordance 
with the GASP in noise [21–23]. The GD is considered as a linear 
combination of the correlation detector, which is optimal in the 
Neyman-Pearson criterion sense under detection of signals with a 
priori known parameters, and the ED, which is optimal under de-
tection of signals with a priori unknown parameters or stochastic 
parameters. This GD feature allows us to obtain the better detec-
tion performance in comparison with other classical and modern 
receivers or detectors employed in practice.

The specific feature of GASP is introduction of the additional 
noise source that does not carry any information about the signal 
with the purpose to improve a qualitative signal detection perfor-
mance. This additional noise can be considered as the reference 
noise without any information about the signal to be detected [21]. 
The jointly sufficient statistics of the log-LRT mean and variance is 
obtained in the case of GASP implementation, while the classical 
and modern signal processing theories can deliver only a sufficient 
statistics of the log-LRT mean or variance, i.e., not the jointly suf-
ficient statistics of the log-LRT mean and variance. Thus, the GASP 
allows us to obtain more information about the received informa-
tion signal, the PU signal. Owing to this fact, an implementation 
of receivers constructed based on GASP basis allows us to im-
prove the spectrum sensing performance of CR wireless networks 
in comparison with employment of other conventional receivers at 
the SU.

The conventional GD flowchart is presented in Fig. 2. As we can 
see, the GD consists of three channels:

• The GD correlation channel (detector) – the preliminary filter 
(PF), multipliers 1 and 2, model signal generator MSG.

• The GD autocorrelation channel (GD ED) – the PF, additional 
filter (AF), multipliers 3 and 4, summator 1.

• The GD compensation channel – the summators 2, 3 and ac-
cumulator 1.



4 M. Shbat, V. Tuzlukov / Digital Signal Processing 93 (2019) 1–21
Fig. 2. GD structure: AF – additional filter; PF – preliminary filter; MSG – model signal generator; NPE – noise power estimation; THRA – threshold apparatus; PU Signal – 
primary user signal presence; No PU Signal – primary user signal absence.
The GD PF and AF are the bandpass filters (the linear discrete 
time systems) with the impulse responses hPF [m] and hAF[m], re-
spectively. For simplicity of analysis, we assume that these filters 
have the same amplitude-frequency characteristics or impulse re-
sponses by shape. Moreover, the GD AF central frequency is de-
tuned with respect to the GD PF one on such a value that the 
information signal, the PU signal, cannot pass through the GD AF. 
Thus, the PU signal and noise can be appeared at the GD PF output 
only and the only noise is appeared at the GD AF output. If a value 
of detuning between the GD AF and PF central frequencies is not 
less 4� f s , where � f s is the PU signal bandwidth, the processes at 
the GD AF and PF outputs can be considered as the uncorrelated 
and independent processes and, in practice, under this condition, 
the coefficient of correlation between the GD PF and AF output 
processes is not more than 0.05 that was confirmed experimen-
tally in [47] and [48].

In general, under practical implementation of any detector in 
spectrum sensing, the bandwidth of the spectrum to be sensed 
is defined. Thus, the GD AF bandwidth and central frequency can 
be assigned, too. In the present paper, we consider the spectrum 
sensing problem of a single radio channel where the GD AF band-
width is always idle but it cannot be used by the SU because 
it is out of the useful spectrum of the considered primary net-
work. There is a need to note that, in general case, the GD AF 
portion of the spectrum may be occupied by the PU signals from 
other networks, it is not unoccupied absolutely. In this case, such 
PU signals from other networks could be considered as interfer-
ences or interfering signals. The case when there are interfering 
signals with the limits of the GD AF bandwidth, the action of these 
interferences on the GD detection performance, and the case of 
non-ideal functioning condition for GD when the noise at the GD 
AF and PF are not identical by statistical parameters are discussed 
in [35].

In [21] under delivering the conventional GD decision statistics 
based on the likelihood ratio the processes at the GD AF and GD PF 
outputs were interpreted as the input stochastic samples generated 
by two independent sources. Thus, the GD AF can be considered as 
a reference noise generator with a priori knowledge a “no” signal, 
the reference sample noise. The GD PF can be considered as a gen-
erator with “a yes” signal (signal plus noise) or “a no” signal (noise 
only) sample. Detailed discussion of the GD AF and GD PF can be 
found in [21] and [22, Chapter 5]. The noise at the GD PF and GD 
AF outputs can be presented in the following form:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wPF[k] =
M∑

i=1

ζi[k] =
∞∑

m=−∞
hPF[m]wi[k − m],

wAF[k] =
M∑

i=1

ηi[k] =
∞∑

m=−∞
hAF[m]wi[k − m].

(8)

As follows from Fig. 2, under the hypothesis H1, the GD ED 
generates PU signal energy s2

i [k] and the random component 
si[k]ζi[k] caused by interaction between the PU signal si[k] and the 
noise ζi[k] at the GD PF output. The main purpose of the GD com-
pensation channel is to cancel completely in the statistical sense 
the GD correlation channel noise component smod

i [k]ζi[k] and the 
GD ED random component si[k]ζi[k] between each other based on 
the same nature of the noise ζi[k].

The relation between the signal to be detected si[k] and the 
model signal smod

i [k] can be defined as:

smod
i [k] = μsi[k], (9)

where μ is the coefficient of proportionality. Satisfying the GD 
main functioning condition smod

i [k] = si[k], i.e., μ = 1 we are able 
to detect the PU signal with the high probability of detection at 
the low SNR and define the PU signal parameters with high ac-
curacy. Practical realization of this condition requires increasing in 
the complexity of receiver structure and, consequently, leads us to 
increasing in the computational cost.

Under the hypothesis H0, i.e., a “no” PU signal, satisfying the 
GD main functioning condition given by (9), we obtain only the 
background noise η2

i [k] − ζ 2
i [k] at the GD output. Additionally, the 

practical implementation of the GD decision statistics requires an 
estimation of the noise variance σ 2

w using the reference noise ηi[k]
at the GD AF output. The threshold apparatus (THRA) device in 
Fig. 2 allows us to define the GD threshold. In the present paper, 
the GD circuitry is demonstrated with the purpose to explain the 
main functioning principles. Because of this, the GD flowchart pre-
sented in Fig. 2 must be considered under this viewpoint only.

The complete matching between the model signal smod
i [k] and 

the incoming PU signal si[k], for example, by amplitude is a very 
hard problem in practice because the incoming PU signal si [k] de-
pends on both the fading and the transmitted signal where it is 
impractical to estimate the fading gain at the low SNR. This match-
ing is possible in the ideal case only. The GD detection perfor-
mance will be deteriorated under mismatching between the model 
signal smod

i [k] and the incoming PU signal si[k] and the impact 
of this problem is discussed in [46], where the complete analy-
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sis about the violation of the main GD functioning requirements is 
presented.

Under the hypothesis H1, the signal at the PF output, see Fig. 2, 
can be defined as xi[k] = si[k] + ζi[k], where si[k] = hi[k]s[k]. Un-
der the hypothesis H0 and for all i and k, the process xi[k] = ζi[k]
at the PF output is subjected to the complex Gaussian distribu-
tion and can be considered as the independent and identically 
distributed (i.i.d.) process. In the ideal case, we can think that the 
signal at the GD AF output is the reference noise ηi[k] with the 
same statistical parameters as the noise ζi [k]. In practice, there is 
a difference between the statistical parameters of the noise ηi [k]
and ζi[k]. How this difference impacts on the GD detection perfor-
mance is discussed in detail in [22, Chapter 7, pp. 631–695].

The decision statistics at the GD output presented in [21] and 
[22] is extended to the case of antenna array employment when 
an adoption of multiple antennas and antenna arrays is effective 
to mitigate the negative attenuation and fading effects [32,33]. The 
decision statistics at the GD output can be presented in the follow-
ing form:

TGD(X) =
N−1∑
k=0

M∑
i=1

2xi[k]smod
i [k] −

N−1∑
k=0

x2
i [k]

+
N−1∑
k=0

M∑
i=1

η2
i [k] ≷H1

H0
THRGD, (10)

where THRGD is the GD detection threshold. We can rewrite (10)
in the matrix form as follows:

TGD(X) = 2SmodX − X2 + η2 ≷H1
H0

THRGD, (11)

where

X = {x[0], . . . ,x[N − 1]} (12)

is the M × 1 matrix of the stochastic process at the GD PF output 
with the elements defined as

x[k] = {x1[k], . . . , xM [k]}T ; (13)

Smod = {smod[0], . . . , smod[N − 1]} (14)

is the M × 1 matrix of the process at the MSG output with the 
elements defined as

smod[k] = {smod
1 [k], . . . , smod

M [k]}T ; (15)

η = {η[0], . . . ,η[N − 1]} (16)

is the M × 1 matrix of the stochastic process at the GD AF output 
with the elements defined as

η[k] = {η1[k], . . . , ηM [k]}T
. (17)

According to the GASP and GD flowchart shown in Fig. 2, the 
GD decision statistics takes the following form under the hypothe-
ses H1 and H0, respectively:

TGD(X) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−1∑
k=0

M∑
i=1

s2
i [k] +

N−1∑
k=0

M∑
i=1

η2
i [k] −

N−1∑
k=0

M∑
i=1

ζ 2
i [k] ⇒ H1,

N−1∑
k=0

M∑
i=1

η2
i [k] −

N−1∑
k=0

M∑
i=1

ζ 2
i [k] ⇒ H0.

(18)

The term 
∑N−1

k=0

∑M
i=1 s2

i [k] is the average energy of the received 
PU signal and the term 

∑N−1∑M
i=1 η2[k] − ∑N−1∑M

i=1 ζ 2[k]
k=0 i k=0 i
presents the background noise at the GD output that is a differ-
ence between the noise power at the GD PF and GD AF outputs.

The mean mGD
H0

and variance VarGD
H0

of the decision statistics 
TGD(X) at the GD output under consideration of the hypothesis 
H0 are given in the following form [25, Chapter 3]:{

mGD
H0

= E[TGD(X)|H0] = 0,

VarGD
H0

= Var[TGD(X)|H0] = 4N Mσ 4
w .

(19)

The above-mentioned discussion is correct for the case when 
the noise variance at the GD AF and GD PF outputs is the same, i.e., 
σ 2

ζ = σ 2
η = σ 2

w . For the case that is very close to practice if the GD 
AF and GD PF are the band pass filters with deviation in parame-
ters, i.e., σ 2

ζ �= σ 2
η , we can assume σ 2

ζ = σ 2
w and σ 2

η = βσ 2
ζ = βσ 2

w . 
For this case, (19) takes the following form:{

mGD
H0

= E[TGD(X)|H0] = 0,

VarGD
H0

= Var[TGD(X)|H0] = 2N Mσ 4
w(1 + β2).

(20)

In the present paper, we discuss the GD implementation as a 
spectrum sensor in CR systems, i.e., coarse sensing. Detailed dis-
cussion about the main GD functioning principles if there is no a 
priori information about the PU signal and there is an uncertainty 
about the PU signal parameters, i.e., the PU signal parameters are 
stochastic, can be found in [21] and [22, Chapter 6, pp. 611–621 
and Chapter 7, pp. 631–695].

4. MGF of the decision statistics at the GD output

The moment generating function (MGF) for the GD partial de-
cision statistics TGD(Xk) under the hypothesis H1 given by

TGD(Xk) =
M∑

i=1

s2
i [k] +

M∑
i=1

η2
i [k] −

M∑
i=1

ζ 2
i [k] (21)

is required. This MGF can be presented in the following form (see 
Appendix 2):

MTGD(Xk)(l)

=
M∏

i=1

[
1 − Esσ

2
h αil
]−1

M∏
i=1

Mz1i
(l)

M∏
i=1

Mz2i
(−l)

=
M∏

i=1

[
1 − Esσ

2
h αil
]−1

M∏
i=1

(
1 − 2σ 2

wl
)−0.5

M∏
i=1

(
1 + 2σ 2

wl
)−0.5

=
M∏

i=1

[
1 − Esσ

2
h αil
]−1(

1 − 2σ 2
wl
)−0.5M(

1 + 2σ 2
wl
)−0.5M

= (1 − 4σ 4
wl2
)−0.5M

M∏
i=1

[
1 − Esσ

2
h αil
]−1

, (22)

where αi is the eigenvalue of the correlation matrix R given by (2)
for the i-th spatial channel. Based on (22) and taking into consid-
eration results discussed in [33], the mean and variance of the GD 
partial decision statistics TGD(Xk) under the hypothesis H1 take 
the following form, respectively:⎧⎪⎪⎨
⎪⎪⎩

mGD
H1

= E[TGD(X)|H1] = N M Esσ
2
h ,

VarGD
H1

= Var[TGD(X)|H1] = N

[ M∑
E2

s σ
4
h α2

i + 4Mσ 4
w

]
.

(23)
i=1
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For the case σ 2
ζ �= σ 2

η , (23) takes the following form:⎧⎪⎪⎨
⎪⎪⎩

mGD
H1

= E[TGD(X)|H1] = N M Esσ
2
h ,

VarGD
H1

= Var[TGD(X)|H1] = N

[ M∑
i=1

E2
s σ

4
h α2

i +2Mσ 4
w(1 + β2)

]
.

(24)

We consider the case when a relation between the model signal 
and incoming PU signal can be presented by (9) if the coefficient 
of proportionality equal to μ. Under the condition (9), the MGF of 
the GD partial decision statistics

TGD(Xk) =
M∑

i=1

s2
i [k](2μ − 1) +

M∑
i=1

2si[k]ξi[k](μ − 1)

+
M∑

i=1

η2
i [k] −

M∑
i=1

ξ2
i [k] (25)

takes the following form:

MTGD(Xk)(l)

=
M∏

i=1

[
1 − Esσ

2
h l(2μ − 1)

]−1
M∏

i=1

[
1 − 2l(μ − 1)

√
Esσ

2
h σ 2

w
]−1

× (1 − 2σ 2
wl
)−0.5M(

1 + 2σ 2
wl
)−0.5M

. (26)

Based on (26), the mean mGD
H1

and variance VarGD
H1

of the GD 
partial decision statistics TGD(Xk) under the hypothesis H1 are de-
fined using the following form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mGD
H1

= E[TGD(X)|H1] = N M(2μ − 1)Esσ
2
h ;

VarGD
H1

= Var[TGD(X)|H1]
= N

{ M∑
i=1

[
(2μ−1)2 E2

s σ
2
h α2

i +4(μ−1)2 Esσ
2
h αiσ

2
w

]+4σ 4
w

}
;

σ 2
ζ = σ 2

η = σ 2
w;

(27)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mGD
H1

= E[TGD(X)|H1] = N M(2μ − 1)Esσ
2
h ;

VarGD
H1

= Var[TGD(X)|H1]

= N

{ M∑
i=1

[
(2μ − 1)2 E2

s σ
2
h α2

i +2(μ − 1)2 Esσ
2
h αiσ

2
w(1 + β)

]
+ 2σ 4

w(1 + β2)

}
;σ 2

ζ �= σ 2
η .

(28)

5. WGD and GLRT-GD: correlated antenna array elements

Finally, the weighted GD (WGD) decision statistics can be de-
termined using the following form (see Appendix 1):

TWGD(X) = ln LGD(X)

=
N−1∑
k=0

M∑
i=1

Esσ
2
h αi

2σ 2
w(Esσ

2
h αi + σ 2

w)
y2

i [k]

− N

2σ 2
w

[
M∑

i=1

λRxi −
M∑

i=1

λRη i

]

=
N−1∑ M∑ γ αi

2σ 2
w(γ αi + 1)

y2
i [k]

w

γ

is
c
w
fo
p

t
U

R

t

R

a
v
s
t
w
e
a
m

s

T

n
d
d
o
is
o
c
p

t
t
b
a
i.
t
u
t
p
c
u
t

k=0 i=1
− N

2σ 2
w

[
M∑

i=1

λRxi −
M∑

i=1

λRη i

]
≷H1

H0
THRWGD, (29)

here THRWGD is the decision statistics threshold, and

= Esσ
2
h

σ 2
w

(30)

 the SNR at the GD input. We see from (30) that the weighting 
oefficients γαi/(γ αi + 1) are actually similar to the Wiener filter 
eights in a transformed space [3]. The effect of the linear trans-
rmation X[k] to Y[k] is to decorrelate the matrix X of the random 

rocess at the GD PF output.
For the better understanding, let us define the covariance ma-

rix RY [k] of the transmitted data Y[k] under each hypothesis. 
nder the hypothesis H1 we have:

H1
Y [k] = E

{
VH X[k]XH [k]V}= VH(R + σ 2

w I
)
V

= VH RV + σ 2
w I = � + σ 2

w I. (31)

We can see that RH1
Y [k] is a diagonal matrix. Similarly, under 

he hypothesis H0 we can find that

H0
Y [k] = σ 2

w I. (32)

Hence, the process Y[k] consists of uncorrelated random vari-
bles and owing to the fact that the variances of these random 
ariables are not equal between each other the WGD weights the 
quares of yi[k] differently. Thus, the components of X[k] are likely 
o be much larger when the PU signal is present in comparison 
ith the case when the PU signal is absent. As a result, the WGD 

mployment helps us to reduce the spatial correlation between the 
ntenna array elements and improve the signal detection perfor-
ance.

Based on (109) and (114) (see Appendix 1) the GLRT-GD deci-
ion statistics takes the following form:

GLRT
GD

(
Y = VH X

)
= ln LGLRT

GD (Y) = N M

2
ln σ̂ 2

0 − N

2

M∑
i=1

ln σ̂ 2
1 (γ λi + 1)

−
N−1∑
k=0

M∑
i=1

y2
i [k]

2σ̂ 2
1 (γ λi + 1)

+
N−1∑
k=0

ηH [k]η[k]
2σ̂ 2

0 I
. (33)

The test statistics of the proposed spectrum sensing approaches, 
amely, the weighted GD (WGD) and GLRT-GD can increase the 
egree of knowledge needed for the PU signal detection by intro-
ucing two sample covariance matrices of the data samples at the 
utputs of GD PF and GD AF. Moreover, the eigen-decomposition 
 applied to represent these sample covariance matrices in terms 
f eigenvalues and eigenvectors (the matrix factorization into a 
anonical form) that adds even more effectiveness to the noise 
ower MLEs performance designed for GLRT-GD approach.

The noise power is estimated applying consistent MLE in real 
ime using the reference noise samples η = {η[0], . . . , η[N − 1]} at 
he GD AF output in the case of GLRT-GD. The direct impacts can 
e observed on the spectrum sensing performance of this approach 
s a consequence of the better noise power estimation accuracy, 
e., the smaller estimation error, which leads to the better de-
ection threshold definition alleviating the effect of noise power 
ncertainty and the related SNR wall problem when increasing 
he number of samples or sensing time will not improve sensing 
erformance. Thus, the GLRT-GD can calibrate the noise power un-
ertainty under estimation process by the compensation channel 
sing the reference noise forming at the GD AF output and detect 
he PU signal at low SNR values (see Section 7, Figs. 3–8, 12).
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6. Optimal GD detection threshold: fading channels

The performance of any detector is evaluated by the probabil-
ity of detection P D , bit error rate (BER), probability of false alarm 
P FA , probability of error P error , and probability of miss P miss . The 
detection threshold is the main parameter used to determine these 
probabilities. In general, it is desirable to achieve the high proba-
bility of detection P D keeping the probability of false alarm P FA as 
small as possible. A choice of the detection threshold can be car-
ried out based on various objectives such as the total error rate 
minimization [49]. We derive the optimal detection threshold in 
the case of the conventional GD for different fading channels min-
imizing the probability of error P error .

6.1. AWGN fading channel

The GD decision statistics TGD(X) under consideration of the 
hypothesis H0 is the sum of i.i.d. N × M random variables obeyed 
to the McDonald’s distribution [22, Chapter 3, pp. 250–263]. We 
can approximate the probability density function (pdf) of the GD 
decision statistics TGD(X) by the normal Gaussian distribution law 
based on the central limit theorem as N → ∞. The central limit 
theorem can give a reasonable approximation for the original pdf 
if the number of samples is sufficiently large, in practice, N × M 	
10 [42]. As a result, the GD decision statistics TGD(X) is the sum of 
i.i.d. random variables and the central limit theorem can be applied 
to define the pdf of the decision statistics at the GD output if the 
number of observed samples is large. In line with, we can define 
the probability of false alarm P GD

FA and the probability of detection 
P GD

D as follows [23]:

P GD
FA = P

[
TGD(X) ≥ THRGD|H0

]= Q

(THRGD − mGD
H0√

VarGD
H0

)
, (34)

P GD
D = P

[
TGD(X) ≥ THRGD|H1

]= Q

(
THRGD − mGD

H1√
VarGD

H1

)
, (35)

where

Q (x) = 1√
2π

∞∫
x

exp
(−0.5t2)dt (36)

is the Marcum Q -function; mGD
H0

and VarGD
H0

are the mean and vari-
ance of the decision statistics TGD(X) under the hypothesis H0, re-
spectively; mGD

H1
and VarGD

H1
are the mean and variance of the deci-

sion statistics TGD(X) under the hypothesis H1, respectively. In the 
case of the hypothesis H0, the mean mGD

H0
and variance VarGD

H0
of 

the decision statistics TGD(X) are given by (19), smod
i [k] = si[k] = 0, 

σ 2
ζ = σ 2

η and (20), smod
i [k] = si[k] = 0, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w . Under the hypothesis H1, the mean mGD
H1

and variance 
VarGD

H1
of the decision statistics TGD(X) are given by (23) at the 

condition smod
i [k] = μsi[k], μ = 1, σ 2

ζ = σ 2
η , (24) at the condition 

smod
i [k] = μsi[k], μ = 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and σ 2

η = βσ 2
w ; 

(27) at the condition smod
i [k] = μsi[k], μ �= 1, σ 2

ζ = σ 2
η , and (28), 

i.e., smod
i [k] = μsi[k], μ �= 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and σ 2

η = βσ 2
w .

Based on the above-mentioned discussion, the GD decision 
threshold THRGD when there is the constraint δ for the probability 
of detection P GD

D can be determined in the following form:

The case 1: smod
i [k] = μsi[k], μ = 1, σ 2

ζ = σ 2
η . Using (23) and 

taking into consideration a definition for SNR given by (30) we 
have
THRGD = mGD
H1

+
√

VarGD
H1

Q −1(δ)

= N M Esσ
2
h + Q −1(δ)

√√√√N

[
M∑

i=1

E2
s σ

4
h α2

i + 4Mσ 4
w

]

= N Mγ σ 2
w + Q −1(δ)

√√√√N

[
M∑

i=1

γ 2σ 4
wα2

i + 4Mσ 4
w

]

= σ 2
w

{
N Mγ + Q −1(δ)

√√√√N

[
M∑

i=1

γ 2α2
i + 4M

]}
. (37)

The case 2: smod
i [k] = μsi[k], μ = 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w . Using (24) and taking into consideration a definition 
for SNR given by (30) we obtain

THRGD = mGD
H1

+
√

VarGD
H1

Q −1(δ)

= N M Esσ
2
h +Q −1(δ)

√√√√N

[
M∑

i=1

E2
s σ

4
h α2

i +2Mσ 4
w
(
1+β2

)]

= N Mγ σ 2
w +Q −1(δ)

√√√√N

[
M∑

i=1

γ 2σ 4
wα2

i +2Mσ 4
w
(
1+β2

)]

= σ 2
w

{
N Mγ +Q −1(δ)

√√√√N

[
M∑

i=1

γ 2α2
i +2M

(
1 + β2

)]}
.

(38)

The case 3: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ = σ 2
η . Using (27) and 

taking into consideration a definition for SNR given by (30) we 
obtain

THRGD = mGD
H1

+
√

VarGD
H1

Q −1(δ)

= N M(2μ − 1)Esσ
2
h + Q −1(δ)

×
√√√√N

[
M∑

i=1

[
(2μ−1)2 E2

s σ
4
h α2

i +4(μ−1)2 Esσ
2
h σ 2

wα2
i

]+4Mσ 4
w

]

= √
N Mσ 2

w

{√
N M(2μ − 1)γ

+ Q −1(δ)

√√√√ 1

M

M∑
i=1

[
(2μ − 1)2γ 2α2

i + 4(μ − 1)2γ αi
]+ 4

}
.

(39)

The case 4: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w . Using (28) and taking into consideration a definition 
for SNR given by (30) we obtain

THRGD = mGD
H1

+
√

VarGD
H1

Q −1(δ)

= N M(2μ − 1)Esσ
2
h + Q −1(δ)

×
√√√√N

[
M∑

i=1

[
(2μ−1)2 E2

s σ
4
h α2

i +2(μ−1)2 Esσ
2
h αiσ

2
w (1+β)

]+2Mσ 4
w
(
1+β2

)]

= √
N Mσ 2

w

{√
N M(2μ − 1)γ

+Q −1(δ)

√√√√ 1

M

M∑
i=1

[
(2μ−1)2γ 2α2

i +2(μ−1)2γαi(1+β)
]+2
(
1+β2

)}
.

(40)
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The constraint δ is required to maintain the predetermined 
lower bound of the probability of detection P GD

D with the purpose 
to avoid a generation of interference under the PU signal transmis-
sion, in other words, P GD

D ≥ δ. The detection threshold in (60)–(63)
is a theoretical presentation used for definition of the probabil-
ity of false alarm P GD

FA at the probability of detection constraint 
P GD

D ≥ δ.
Substituting (19), (20), (37)–(40) into (34) we obtain that the 

probability of false alarm P GD
FA for the correlated antenna array el-

ements can be presented in the following form:

The case 1: smod
i [k] = μsi[k], μ = 1, σ 2

ζ = σ 2
η .

P GDcor
FA = Q

{
1

2

[√
N Mγ + Q −1(δ)

√√√√ 1

M

[
M∑

i=1

γ 2α2
i + 4M

]]}
,

(41)

where γ is the SNR at the GD input given by (30). As follows from 
(64), the probability of false alarm P GD

FA for the uncorrelated inde-
pendent antenna array elements can be presented in the following 
form:

P GDuncor
FA = lim

ρ→0
P GDcor

FA = Q

{
1

2

[√
N Mγ + Q −1(δ)

√
γ 2 + 4

]}
.

(42)

The case 2: smod
i [k] = μsi[k], μ = 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w .

P GDcor
FA = Q

{
1

2

[√
N Mγ

+ Q −1(δ)

√√√√ 1

M

[
M∑

i=1

γ 2α2
i + 2M

(
1 + β2

)]]}
. (43)

As follows from (43), the probability of false alarm P GD
FA for 

the uncorrelated independent antenna array elements can be pre-
sented in the following form:

P GDuncor
FA = lim

ρ→0
P GDcor

FA

= Q

{
1

2

[√
N Mγ + Q −1(δ)

√
γ 2 + 2M

(
1 + β2

)]}
. (44)

The case 3: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ = σ 2
η .

P GDcor
FA = Q

{
1

2

[√
N M(2μ − 1)γ + Q −1(δ)

×
√√√√ 1

M

[
M∑

i=1

[
(2μ−1)2γ 2α2

i +4(μ − 1)2γ αi
]+ 4

]]}
.

(45)

As follows from (45), the probability of false alarm P GD
FA for 

the uncorrelated independent antenna array elements can be pre-
sented in the following form:

P GDuncor
FA = lim

ρ→0
P GDcor

FA = Q

{
1

2

[√
N M(2μ − 1)γ

+ Q −1(δ)

√
(2μ − 1)2γ 2α2

i + 4(μ − 1)2γ αi + 4
]}

.

(46)
The case 4: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w .

P GDcor
FA = Q

{
1

2

[√
N M(2μ − 1)γ + Q −1(δ)

×
√√√√ 1

M

[
M∑

i=1

[
(2μ−1)2γ 2α2

i +2(μ−1)2γαi(1+β)
]+2
(
1+β2

)]]}
.

(47)

As follows from (47), the probability of false alarm P GD
FA for 

the uncorrelated independent antenna array elements can be pre-
sented in the following form:

P GDuncor
FA = lim

ρ→0
P GDcor

FA

= Q

{
1

2

[√
N M(2μ − 1)γ + Q −1(δ)

×
√

(2μ−1)2γ 2α2
i + 2(μ − 1)2γ αi(1 + β) + 2

(
1 + β2

)]}
.

(48)

In the case of AWGN channel, the GD optimal threshold is de-
fined based on the minimal probability of error P GD

error given, in 
general case, as

P GD
errorAWGN

= p0 P GD
FA + p1 P GD

miss, (49)

where

P GD
miss = 1 − P GD

D (50)

is the probability of miss, p0 and p1 = 1 − p0 are the a priori prob-
abilities of the PU signal absence and presence at the GD input, 
respectively. For simplicity of analysis, we assume that these a pri-
ori probabilities are equal between each other, i.e., p0 = p1 = 0.5. 
Thus, we can write

THRop
GDAWGN

= arg min
THRGD

P GD
error(THRGD). (51)

Consider the case when the antenna array elements are uncor-
related. In this case, taking into consideration (19), (20), (27), (28), 
and (35) (51) can be presented in the following form:

The case 1: smod
i [k] = μsi[k], μ = 1, σ 2

ζ = σ 2
η .

THRop
GDAWGN

= arg min
THRGD

1

2

{
1 − 1

2
erfc

{
THRGD − N Mγ σ 2

w

σ 2
w

√
2N M(γ 2 + 4)

}

+ 1

2
erfc

{
THRGD

2σ 2
w

√
2N M

}}
. (52)

The case 2: smod
i [k] = μsi[k], μ = 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w .

THRop
GDAWGN

= arg min
THRGD

1

2

{
1 − 1

2
erfc

{
THRGD − N Mγ σ 2

w

σ 2
w

√
2N M[γ 2 + 2(1 + β2)]

}

+ 1

2
erfc

{
THRGD

2σ 2
w

√
2N M(1 + β2)

}}
. (53)
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The case 3: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ = σ 2
η .

THRop
GDAWGN

= arg min
THRGD

1

2

{
1− 1

2
erfc

{
THRGD−N Mγ σ 2

w(2μ−1)

σ 2
w

√
2N M[(2μ−1)2γ 2+4(μ−1)2γ +4]

}

+ 1

2
erfc

{
THRGD

2σ 2
w

√
2N M

}}
. (54)

The case 4: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w .

THRop
GDAWGN

= arg min
THRGD

1

2

{
1− 1

2

×erfc

{
THRGD−N Mγ σ 2

w(2μ−1)

σ 2
w

√
2N M[(2μ−1)2γ 2+4(μ−1)2γ (1+β)+2(1+β2)]

}

+ 1

2
erfc

{
THRGD

2σ 2
w

√
2N M(1 + β2)

}}
, (55)

where [49]

Q (x) = 1

2
erfc

(
x√
2

)
(56)

is used to replace the Q -function with the complementary error 
function erfc(x). We determine the optimal threshold using the fol-
lowing equality

∂[P GD
error(THRGD)]
∂(THRGD)

= 0. (57)

To solve (57) we can use the following equation [49]

∂

∂x
erfc

(
x − G

L

)
= − 2

L
√

π
exp

[
− (x − G)2

L2

]
, (58)

where G and L are the arbitrary constants. Taking into considera-
tion (52)–(58) we can write:

The case 1: smod
i [k] = μsi[k], μ = 1, σ 2

ζ = σ 2
η .

∂[P GD
error(THRGD)]
∂(THRGD)

= 1

2

{
1√

2π N M(E2
s σ

4
h + 4σ 4

w)

exp

{
−[THRGD − N M Esσ

2
h ]2

2N M(E2
s σ

4
h + 4σ 4

w)

}

− 1

2
√

2π N Mσ 4
w

exp

{
− THR2

GD

8N Mσ 4
w

}}
= 0. (59)

Solving (59) with respect to THRGD (see Appendix 3), the GD 
optimal threshold in the case of the AWGN channel is defined in 
the following form:

THRop
GDAWGN

≈ 2N Mσ 2
w . (60)

Thus, the optimal normalized GD threshold, the normalization 
factor is N M , defined as

T HRop
GDAWGN

≈ THRop
GDAWGN

N M
= 2σ 2

w (61)

is a function of the GD input noise variance only.

The case 2: smod
i [k] = μsi[k], μ = 1, σ 2

ξ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

σ 2
η = βσ 2

w .

∂[

op
th

TH

T

tio

∂[

op
th

TH

T

σ 2
η

∂[

=

×

−

op
th
P GD
error(THRGD)]
∂(THRGD)

= 1

2

{
1√

2π N M[E2
s σ

4
h + 2σ 4

w(1 + β2)]

× exp

{
− [THRGD − N M Esσ

2
h ]2

2N M[E2
s σ

4
h + 2σ 4

w(1 + β2)]
}

− 1

2
√

2π N Mσ 4
w(1 + β2)

exp

{
− THR2

GD

4N Mσ 4
w(1 + β2)

}}
= 0.

(62)

Solving (62) with respect to THRGD (see Appendix 3), the GD 
timal threshold in the case of the AWGN channel is defined in 
e following form:

Rop
GDAWGN

≈ N Mσ 2
w

√
2
(
1 + β2

)
. (63)

The optimal normalized GD threshold is given by

HRop
GDAWGN

≈ THRop
GDAWGN

N M
= σ 2

w

√
2
(
1 + β2

)
. (64)

As follows from (64), if β = 1 we obtain the optimal GD detec-
n threshold given in (60).

The case 3: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ = σ 2
η .

P GD
error(THRGD)]
∂(THRGD)

= 1√
2π N M[(2μ − 1)2 E2

s σ
4
h + 4(μ − 1)2 Esσ

2
h + 4σ 4

w ]

× exp

{
− [THRGD − N M(2μ − 1)Esσ

2
h ]2

N M[(2μ − 1)2 E2
s σ

4
h + 4(μ − 1)2 Esσ

2
h + 4σ 4

w ]
}

− 1

2σ 2
w

√
2π N M

exp

{
− THR2

GD

8N Mσ 4
w

}
= 0. (65)

Solving (65) with respect to THRGD (see Appendix 3), the GD 
timal threshold in the case of the AWGN channel is defined in 
e following form:

Rop
GDAWGN

≈ 2(2μ − 1)N Mσ 2
w . (66)

The optimal normalized GD threshold is given by

HRop
GDAWGN

≈ THRop
GDAWGN

N M
= 2(2μ − 1)σ 2

w . (67)

The case 4: smod
i [k] = μsi[k], μ �= 1, σ 2

ζ �= σ 2
η , i.e., σ 2

ζ = σ 2
w and 

= βσ 2
w .

P GD
error(THRGD)]
∂(THRGD)

1√
2π N M[(2μ − 1)2 E2

s σ
4
h + 2(μ − 1)2 Esσ

2
h (1 + β) + 2σ 4

w (1 + β2)]

exp

{
− [THRGD−N M(2μ−1)Esσ

2
h ]2

2N M[(2μ−1)2 E2
s σ

4
h +2(μ−1)2 Esσ

2
h (1+β)+2σ 4

w (1+β2)]
}

1

2σ 2
w

√
2π N M

exp

{
− THR2

GD

4N Mσ 4
w(1 + β2)

}
= 0. (68)

Solving (68) with respect to THRGD (see Appendix 2), the GD 
timal threshold in the case of the AWGN channel is defined in 
e following form:
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THRop
GDAWGN

≈ 2(2μ − 1)(1 + β2)

(μ − 1)2(1 + β)
N Mσ 2

w . (69)

The optimal normalized GD threshold is given by

T HRop
GDAWGN

≈ THRop
GDAWGN

N M
= 2(2μ − 1)(1 + β2)

(μ − 1)2(1 + β)
σ 2

w . (70)

As follows from (60), (63), (66), and (69) in the case of the 
AWGN channel, the GD optimal threshold is dependent on the 
noise power at the GD input, the relation between smod

i [k] and 
si[k], i.e., the value of μ, the value of β , the number of antenna 
array elements M , and the sample size N .

6.2. Nakagami-m fading channel

For a definition of the optimal GD threshold in the case of 
Nakagami-m fading channel there is a need to determine the aver-
age probability of miss P GDav

miss and substitute it in the probability of 
error P GD

error given by

P GD
errorNakagami

= p0 P GD
FA + p1 P GDav

miss . (71)

Assume that the SNR distribution at the GD input is p(γ ). Then 
the average probability of P GDav

miss can be presented in the following 
form:

P GDav
miss =

∞∫
0

P GD
miss(γ )p(γ )dγ . (72)

If the PU signal amplitude obeys the Nakagami-m distribution 
the SNR distribution p(γ ) at the GD input is [50]

pGD
Nakagami(γ ) = 1

�(m)

(
m

γav

)m

γ m−1 exp

{
− m

γav
γ

}
, (73)

where γav is the average SNR at the GD input; m is the fading 
parameter, i.e., the parameter controlling the severity or depth of 
the amplitude fading; �(m) is the Gamma function [50].

Considering the case 1, i.e., smod
i [k] = μsi[k], μ = 1, σ 2

ζ = σ 2
η

the probability of miss P GD
miss can be presented as

P GD
miss = 1 − P GD

D = 1 − 1

2
erfc

{
THRGD − N Mγ σ 2

w

σ 2
w

√
2N M(γ 2 + 4)

}
. (74)

Since CR systems operate at the low SNR, we can use the fol-
lowing approximation γ 2 + 4 ≈ 4. Based on the equality

1

2
erfc(−x) = 1 − 1

2
erfc(x) (75)

(74) can be rewritten in the following form:

P GD
miss = 1

2
erfc

{
N Mγ σ 2

w − THRGD

2σ 2
w

√
2N M

}
. (76)

After substituting (73) and (76) in (72) we can write

P GDav
missNakagami

= 1

2�(m)

(
m

γav

)m ∞∫
0

γ m−1 exp

{
− m

γav
γ

}

× erfc

{
γ

√
N M√ − THRGD

2
√

}
dγ . (77)
2 2 2σw 2N M
Taking into consideration the integral [51]

∞∫
0

xv exp(−cx)erfc(ax + b)dx

= (−1)v ∂ v

dcv

{
1

c

[
erfc(b)−exp

{
− c2 + 4abc

4a2

}
erfc

{
b+ c

2a

}]}
,

(78)

where

v = m − 1,m is integer ;a =
√

N M

2
√

2
;b = − THRGD

2σ 2
w

√
2N M

; c = m

γav
;

(79)

we can rewrite (77) in the following form:

P GDav
missNakagami

= (−1)m−1 1

2�(m)

(
m

γav

)m
∂m−1

∂(m/γav)m−1

×
{

γav

m

[
erfc

{
− THRGD

2σ 2
w

√
2N M

}

− exp

{
− 2m

N Mγav

[
m

γav
− THRGD

2σ 2
w

]}

× erfc

{
m

√
2

γav
√

N M
− THRGD

2σ 2
w

√
2N M

}]}
. (80)

Evidently, it is very difficult to derive the GD optimal threshold 
in the case of the Nakagami-m fading channel, especially if m > 1, 
because the probability of error

P GD
errorNakagami

= p0 P GD
FA + p1 P GDav

missNakagami
(81)

has a nonlinear character. Thus, owing to P GD
errorNakagami

nonlinear 
character, as a result, a solution can be obtained numerically us-
ing MATLAB or other numerical methods and procedures.

6.3. Rayleigh fading channel

As before, we consider the case 1, i.e., smod
i [k] = μsi[k], μ = 1, 

σ 2
ζ = σ 2

η . In the case of Rayleigh fading channel, the average prob-

ability of miss P GDav
missRayleigh

can be obtained substituting m = 1 in 
(80), i.e., we can use the wide spread Rayleigh fading model:

P GDav
missRayleigh

= 1

2

{
erfc

{
− THRGD

2σ 2
w

√
2N M

}

− exp

{
− 2

N Mγav

[
1

γav
− THRGD

2σ 2
w

]}

× erfc

{ √
2

γav
√

N M
− THRGD

2σ 2
w

√
2N M

}}
. (82)

The case m < 1 corresponds to the high severe fading than the 
Rayleigh fading while the case m > 1 means the low severe fading 
in comparison with the Rayleigh fading [52]. The probability of 
error P GD

error under the Rayleigh fading channel can be determined 
in the following form:

P GD
error = p0 P GD

FA + p1 P GDav . (83)

Rayleigh missRayleigh
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Table 1
The optimal thresholds of ED and GD.

Fading channel type

Detector AWGN Nakagami-m Rayleigh

GD THRop
GDAWGN

= 4N Mσ 2
w THRop

GDNakagami
= 4N Mσ 2

w THRop
GDRayleigh

= 4N Mσ 2
w

ED THRop
EDAWGN

= N Mσ 2
w THRop

EDNakagami
= N Mσ 2

w THRop
EDRayleigh

= N Mσ 2
w

Based on the procedure discussed in the previous subsections 
there is a need to determine the first derivative of the probabil-
ity of error P GD

errorRayleigh
given in (83) with respect to the detection 

threshold THRGD to define the GD optimal threshold in the case of 
Rayleigh fading channel with the aid of (57), (58) [53] and (75). 
Thus, we obtain

∂(P GD
errorRayleigh

)

∂(THRGD)

= 1

2N Mγavσ
2
w

exp

{
2

N Mγav

[
1

γav
− THRGD

2σ 2
w

]}

− 1

4
√

2π N Mγavσ
2
w

exp

{
2

N Mγav

[
1

γav
− THRGD

2σ 2
w

]}

× exp

{
− (γavTHRGD − 4σ 2

w)2

8N Mγ 2
avσ

4
w

}

− 1

4N Mγavσ
2
w

exp

{
2

N Mγav

[
1

γav
− THRGD

2σ 2
w

]}

× erfc

{
γavTHRGD − 4σ 2

w

2
√

2N Mγavσ
2
w

}
. (84)

Setting (84) to zero and applying some mathematical transfor-
mations we obtain:

exp

{
−γavTHRGD − 4σ 2

w

2
√

2N Mγavσ
2
w

}
erfc

{
γavTHRGD − 4σ 2

w

2
√

2N Mγavσ
2
w

}
=
√

N M

2π
γav.

(85)

Derivation of the direct formula of the optimal threshold 
THRop

GDRayleigh
using (108) requires very cumbersome mathematics 

but it is possible to solve this problem applying numerical meth-
ods. Under the low SNR, γav � 1 the right side in (85) becomes 
negligible. Introduce the following notation:

χ = −γavTHRGD − 4σ 2
w

2
√

2N Mγavσ
2
w

. (86)

In this case, we can write (85) as

exp
(−χ2)erfc(χ) =

√
N M

2π
γav. (87)

We can notice that if γav � 1 and THRGD → 4N Mσ 2
w the left 

side in (87) tends to approach a very small value:

lim
χ→∞ exp

(−χ2)erfc(χ) → 0. (88)

Based on (87) and (88) we see that the optimal GD detection 
threshold is approximately closed to 4N Mσ 2

w . Thus, in the case of 
Rayleigh fading channel, the optimal GD threshold can be approx-
imated by the following form:

THRop
GDNakagami

≈ 4N Mσ 2
w . (89)

Owing to the fact that the Nakagami-m fading varies between 
the Rayleigh fading and Gaussian fading, 1 < m < ∞, the optimal 
Table 2
The optimal thresholds of GD in the case of AWGN channel under ideal and non-
ideal conditions.

The case Optimal threshold

μ = 1 and β = 1 (THRop
GD)AWGN = 2N Mσ 2

w

μ = 1 and β �= 1 (THRop
GD)AWGN = N Mσ 2

w

√
2(1 + β2)

μ �= 1 and β = 1 (THRop
GD)AWGN = 2(2μ − 1)N Mσ 2

w

μ �= 1 and β �= 1 (THRop
GD)AWGN ≈ 2(2μ−1)(1+β2)

(μ−1)2(1+β)
N Mσ 2

w

GD threshold in the case of Nakagami-m fading channel is also 
close to 4N Mσ 2

w :

THRop
GDNakagami

≈ 4N Mσ 2
w . (90)

As follows from (89) and (90), the normalized GD optimal 
threshold with the normalization factor N M in the case of Rayleigh 
and Nakagami-m fading channels can be defined as:

T HRop
GDRayleigh

= T HRop
GDNakagami

≈
THRop

GDRayleigh

N M
= 4σ 2

w . (91)

Applying the same procedure for the conventional ED with the 
purpose to define the optimal detection threshold we can find that 
the ED optimal threshold is approximately the same under all fad-
ing channels as shown in [54]:

THRop
GDAWGN

= THRop
GDRayleigh

= THRop
GDNakagami

≈ N Mσ 2
w . (92)

A brief summary of the analysis of Section 6 is presented in 
Table 1 and Table 2. In Table 1 we present the optimal ED and 
GD thresholds under various channel types and for the ideal initial 
condition in the case of GD, μ = 1, β = 1. Table 2 is dedicated 
to the GD presenting the ideal and non-ideal conditions and the 
related optimal threshold for each case under the AWGN channel.

7. Simulation results

In this section, we verify the spectrum sensing performance of 
the conventional GD and the proposed WGD and GLRT-GD by sim-
ulation using MATLAB and compare it with other detectors under 
the uncorrelated and correlated antenna array elements. Simula-
tion is performed using IEEE 802.22 system parameters [54]. The 
main simulation parameters are presented in Table 3.

Comparison of the spectrum sensing performance between the 
conventional GD, conventional ED, MF, and GLRT detector proposed 
in [13] under assumption that the noise power is known is pre-
sented in Fig. 3 when the number of antenna array elements is 
equal to 6, M = 6, the number of samples is equal to 20, N = 20, 
and the antenna array elements are independent, i.e., ρ = 0. The 
test statistics at the GLRT detector output suggested in [13] has a 
simple form of the ratio between the largest eigenvalue and the 
sum of eigenvalues of the sample covariance matrix of the incom-
ing PU signal. As shown in Fig. 3, the conventional GD demon-
strates the better performance in comparison with other above-
mentioned detectors. For example, the conventional GD achieves 
3 dB SNR gain in comparison with the conventional ED at the 
probability of false alarm PFA equal to 0.5; the SNR gain is equal 
approximately to 1 dB in favor of the conventional GD comparing 
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Table 3
Main simulation parameters.

Parameter Value

The angular spread (correlated antenna array elements) � = 0.5◦
The angular spread (uncorrelated antenna array elements) � = 180◦
Distance between antenna elements (correlated antenna array elements) d = λ/8
Distance between antenna elements (uncorrelated antenna array elements) d = λ/2
Number of antenna array elements M is varied from 2 to 10
SNR γ is varied from −20 dB to 0 dB
P D constraint α = 0.99
Coefficient of correlation ρ = 0;0.1;0.25;0.5;0.75;0.9;1.0
Channel parameter σ 2

h = 1
Number of samples N = 20;100
Fig. 3. Comparison of spectrum sensing performance between the conventional ED, 
GD, MF, and GLRT [56] detectors under the independent antenna array elements.

with the MF; and the SNR gain is about 2 dB in comparison with 
the GLRT detector proposed in [13].

In Fig. 4 the spectrum sensing performances of the WED, WGD, 
GLRT-ED, GLRT-GD, AGM, and MME detectors are compared be-
tween each other in the case when the antenna array elements 
are correlated, ρ = 1, the number of antenna array elements is 
equal to 6, M = 6, the number of samples is equal to 20, N = 20. 
The GLRT-GD and WGD have very close spectrum sensing perfor-
mance. The GLRT-GD achieves the SNR gain equal to 2.5 dB, 6.5 dB, 
and 7 dB in comparison with GLRT-ED, MME, and AGM detectors, 
respectively at the probability of false alarm PFA = 0.5.

In the case of the uncorrelated antenna array elements, the 
WGD and WED are just the conventional GD and conventional ED, 
respectively. We can notice from Figs. 3 and 4 that in the case of 
the correlated antenna array elements, the spectrum sensing per-
formance both for ED and GD is worse, i.e., the probability of false 
alarm PFA is high, in comparison with the case of the uncorrelated 
antenna array elements. The proposed WGD and GLRT-GD allow us 
to improve the spectrum sensing performance in comparison with 
the conventional GD when the antenna array elements are corre-
lated.

Effect of the coefficient of correlation ρ on the spectrum sens-
ing performance of WED, WGD, GLRT-ED, GLRT-GD is presented in 
Fig. 5 at M = 6, N = 20, ρ = 0.5; 1.0. As we can see from Fig. 5, 
the probability of false alarm PFA is increased with increasing in 
the correlation coefficient ρ from 0.5 to 1.0 for all detectors. These 
results confirm a negative action of the coefficient of correlation ρ
between the adjacent antenna array elements on detection perfor-
mance.

The receiver operation characteristic (ROC) curves for the GD, 
ED, WED, WGD, GLRT-ED, GLRT-GD are presented in Fig. 6 when 
Fig. 4. Comparison of spectrum sensing performance between the WED, WGD, GLRT-
ED, GLRT-GD, MME and AGM detectors under the correlated antenna array ele-
ments.

Fig. 5. Comparison of spectrum sensing performance between the WED, WGD, GLRT-
ED, and GLRT-GD under different values of the coefficient of correlation.

the antenna array elements are spatially correlated ρ = 1.0 at 
M = 6, N = 20 and SNR = −10 dB. The WGD and GLRT-GD demon-
strate superiority in sensing performance in comparison with the 
WED and GLRT-ED For example, at the probability of false alarm 
PFA = 0.1 in the case of WED and GLRT-ED, the probability of de-
tection P D is equal to 0.55 and 0.6, respectively, while in the case 
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Fig. 6. ROC curves of ED, GD, WED, WGD, GLRT-ED, and GLRT-GD under correlated 
antenna array elements (ρ = 1) at SNR = −10 dB.

Fig. 7. ROC curves of GLRT-ED, GLRT-GD, CA-CFAR, and GED-CFAR detectors at SNR =
0 dB.

of WGD the probability of detection P D is approximately equal to 
0.7, the same as in the case of the GLRT-GD.

In Fig. 7 the ROC curves of constant detection rate (CDR) al-
gorithms, namely, the proposed GLRT-GD and GLRT-ED, and the 
constant false alarm rate (CFAR) algorithms presented by the cell 
averaging CFAR, CA-CFAR with 32 reference cells, and the general-
ized ED with CFAR property, GED-CFAR [39] (the analysis in detail 
is presented in [40]) are shown at M = 6, N = 20 and SNR = 0 dB. 
All these detectors share the presence of noise power estima-
tion techniques. The GLRT-GD demonstrates the best performance 
among other detectors and closely followed by the GED-CFAR per-
formance.

In Fig. 8, the performance of new signal detection algorithms 
is compared with the performance ROC of CBD [10], EME [12], SLE 
[13], MBD [14], and max-min SNR detectors at M = 6, N = 20, 100, 
and SNR = −10 dB. As presented in Fig. 8, the WGD has the best 
performance in comparison with all other detectors. In fact, the 
max-min SNR detector performs slightly better than the WGD in 
the region when its probability of false alarm PFA is within the 
limits of the interval [0, 0.15], but it is noticeable that the num-
ber of samples N is less in the case of WGD. Thus, the GD and 
GLRT-GD have the better performance under small number of sam-
ples N = 20 comparing with the EME, CBD, MBD, and max-min 
Fig. 8. ROC curves of WGD, GLRT-GD, SLE, EME, CBD, moment detector, and max-
min SNR detector under correlated antenna array elements (ρ = 1) at SNR =
−10 dB.

SNR detectors where their performances are shown under very big 
number of samples in the related references [10,12,14], and [15], 
respectively. The SLE detector shares with WGD and GLRT-GD the 
ability to perform well under small sample size N = 20. All detec-
tors shown in Fig. 8 benefit from the large sample size and they 
have very closed performances if the sample size is, for instance 
N = 100.

Comparison of the spectrum sensing performance in terms of 
the probability of error Perror between the conventional GD and ED 
when the antenna array elements are uncorrelated is presented in 
Fig. 9 for various fading channels, namely, the AWGN, Nakagami-2, 
and Rayleigh channels at the ideal operating conditions for the GD, 
i.e., μ = 1, β = 1. These results are obtained at M = 2, N = 100
and SNR = −5 dB. The probability of error Perror is evaluated for 
both detectors as a function of the normalized optimal detection 
threshold with the normalization factor equal to N M . As follows 
from Fig. 9, the conventional GD can achieve the low probabil-
ity of error Perror in comparison with the conventional ED for all 
above-mentioned fading channels at the same SNR. For example, 
in the case of the AWGN fading channel, the lowest probability of 
error P GD

error is equal to 0.19, while the lowest probability of error 
P ED

error is equal to 0.45.
In Fig. 10 the probability of error P GD

error is evaluated at the non-
ideal operating conditions of the conventional GD, i.e., μ �= 1 and 
β �= 1, the noise variance or power at the GD AF and GD PF out-
puts is differed, and compared with the probability of error P GD

error
at M = 2, N = 100 and SNR = −5 dB. Evidently, the P GD

error perfor-
mance is deteriorated in the case β �= 1 in comparison with β = 1. 
This performance degradation is the direct negative effect caused 
by the inequality between the noise variance or noise power at the 
GD PF and GD AF outputs. As shown in Fig. 10, the conventional 
GD presents the better Perror performance in comparison with the 
conventional ED even under the non-ideal operating conditions.

In Fig. 11 the P GD
error performance is presented under the follow-

ing operating conditions μ = 1, β �= 1 and μ �= 1, β �= 1 of the 
conventional GD at M = 2, N = 100 and SNR = −5 dB. As fol-
lows from Fig. 10, the P GD

error performance degradation caused by 
the non-ideal operating conditions is apparent in comparison with 
the ideal case μ = 1, β = 1. This P GD

error performance deterioration 
is a function of the factors μ and β . The conventional GD demon-
strates robustness against the non-ideal conditions and presents in 
the most cases the better probability of error performance com-
paring with the conventional ED (Fig. 9 and Fig. 10). At μ = 0.6, 
β = 0.6 (see Fig. 11), the conventional ED demonstrates the better 
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Fig. 9. Probability of error Perror for the conventional ED and GD (ideal functioning case μ = 1 and β = 1) as a function of the normalized threshold over AWGN, Nakagami-2, 
and Rayleigh fading channels.

Fig. 10. Probability of error Perror for the conventional ED and GD (non-ideal operating conditions μ = 1 and β �= 1) as a function of the normalized threshold over AWGN 
fading channel.
probability of error performance in comparison with the conven-
tional GD (see Fig. 10 and Fig. 11).

The performance of new detectors, namely, WGD and GLRT-GD 
in the form of the complementary receiver operation characteristic 
(CROC) is presented in Fig. 12 under the noise uncertainty when 
the noise power can be defined within the limits of the specific 
interval σ 2

w ∈ [δ−1σ 2, δσ 2], where σ 2 is the nominal noise power 
at the GD input [55,56] and δ is the uncertainty parameter given 
by

δ = 100.1ε, (93)

where ε is the parameter used to define the amount of non-
probabilistic uncertainty in the noise power. The results in Fig. 12
are obtained at M = 6, N = 20 and SNR = −10, −15 dB and 
ε = 1 dB. As follows from Fig. 12, the noise power uncertainty has 
a negative effect on the CROC performance of the conventional GD 
and WGD and GLRT-GD as well. In general, the WGD and GLRT-GD 
improve the conventional GD immunity against the noise power 
uncertainty and the GLRT-GD has the better CROC performance in 
comparison with the WGD. More details about the conventional 
GD character under the noise power uncertainty can be found in 
[41].

Modifications of the conventional GD, namely, the WGD and 
GLRT-GD require more computational cost in comparison with the 
conventional GD owing to a need to compute eigenvalues of the 
correlation and sample covariance matrices both in the case of the 
WED and GLRT-GD. Evaluation and comparison of the GD compu-
tational cost with other detectors is outside a scope of the present 
paper.

8. Conclusions

The spectrum sensing in the CR networks requires sensors that 
are able to detect the frequency holes in a reliable, robust, and 
computationally feasible manner. By these reasons, we suggest to 
employ the GD with the purpose to improve the spectrum sensing 
performance. Comparison of the conventional ED and GD spectrum 
sensing performances is carried out at the same initial conditions 
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Fig. 11. The Perror as a function of the normalized threshold over AWGN fading channel under extreme non-ideal operating conditions for GD, μ �= 1 and β �= 1.
Fig. 12. Complementary ROC of the conventional GD, WGD, and GLRT-GD under 
noise power uncertainty.

under the uncorrelated and spatially correlated antenna array ele-
ments. The conventional GD demonstrates the better sensing per-
formance in comparison with the conventional ED both under the 
uncorrelated and correlated antenna array elements.

To improve further the spectrum sensing performance under 
the correlated antenna array elements, the WGD is suggested in 
the case if the noise power is known and GLRT-GD is proposed 
in the case when the noise power is unknown. The simulation 
results demonstrate validity and superiority of the WGD and GLRT-
GD implementation in CR systems in comparison with the WED, 
GLRT-ED, MME, AGM, EME, CBD, SLE, MBD, and max-min SNR de-
tectors.

The conventional GD and its modifications can deliver the low 
probability of error in comparison with the conventional ED at the 
same SNR in the case of the AWGN, Nakagami-m, and Rayleigh 
fading channels using the optimal detection threshold defined for 
each type of fading channels applying the minimum probability 
of error criterion. The negative effects of the non-ideal condi-
tions, namely, the coefficient of proportionality is not unity and 
the noise power at the GD PF and AF outputs are not identical, on 
the GD performance are evaluated. The GD demonstrates robust-
ness against the non-ideal conditions and maintains a considerable 
spectrum sensing performance improvement.
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Appendix 1

WGD. According to the GASP, the GD likelihood functions un-
der the hypotheses H1 and H0 can be presented in the following 
form:

p
(
η|H0,σ

2
w

)= N−1∏
k=0

1√
(2πσ 2

w I)M
exp

{
−ηH [k]η[k]

2σ 2
w I

}
, (94)

p
(
X|H1,σ

2
w

)= N−1∏
k=0

1√
(2π)M det(Esσ

2
h R + σ 2

w I)

× exp

{
− XH [k]X[k]

2(Esσ
2
h R + σ 2

w I)

}
, (95)

where η = {η[0], . . . , η[N − 1]} and η[k], k = 0, . . . , N − 1 is the 
M ×1 vector of the k-th sample of the reference noise or secondary 
data at the GD AF output; H denotes the Hermitian conjugate; 
and det(·) is the determinant of the matrix. Based on the Neyman-
Pearson theorem when the noise variance σ 2

w is known the GD 
decision statistics can be obtained based on the LRT as follows:

LGD(X) = p(X|H1,σ
2
w)

2
p(η|H0,σw)
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=
N−1∏
k=0

√
σ 2M

w

det(Esσ
2
h R + σ 2

w I)

× exp

{
− XH [k]X[k]

2(Esσ
2
h R + σ 2

w I)
+ ηH [k]η[k]

2σ 2
w I

}
. (96)

After taking the logarithm of (96) and retaining the data depen-
dent terms only, we can define the GD log-LRT using the following 
form:

ln LGD(X) = −
N−1∑
k=0

XH [k]X[k]
2(Esσ

2
h R + σ 2

w I)
+

N−1∑
k=0

ηH [k]η[k]
2σ 2

w I
. (97)

Using the matrix inversion lemma [3]

(A + BFD)−1 = A−1 − A−1B
(
DA−1B + F−1)−1

DA−1 (98)

and letting A = σ 2
w I, B = D = I, and F = Esσ

2
h R we obtain(

Esσ
2
h R + σ 2

w I
)−1

= 1

σ 2
w

I − 1

σ 4
w

[
1

σ 2
w

I + 1

Esσ
2
h

R−1
]−1

= 1

σ 2
w

{
I − 1

σ 2
w

[
1

σ 2
w

I + 1

Esσ
2
h

R−1
]−1

︸ ︷︷ ︸
Z

}
. (99)

Introduce the term Z in (99)

Z = 1

σ 2
w

[
1

σ 2
w

I + 1

Esσ
2
h

R−1
]−1

= 1

σ 2
w

[
1

Esσ
2
h σ 2

w

(
Esσ

2
h R + σ 2

w I
)
R−1
]−1

= Esσ
2
h R
(

Esσ
2
h R + σ 2

w I
)−1

. (100)

Using (99) and (100), (97) can be written in the following form:

ln LGD(X)

= 1

2σ 2
w

{
N−1∑
k=0

XH [k][Esσ
2
h R
(

Esσ
2
h R + σ 2

w I
)−1 − I

]
X[k]

+
N−1∑
k=0

ηH [k]η[k]
}

= 1

2σ 2
w

{
N−1∑
k=0

XH [k][Esσ
2
h R
(

Esσ
2
h R + σ 2

w I
)−1 + σ 2

w I
]
X[k]

−
N−1∑
k=0

XH [k]X[k] +
N−1∑
k=0

ηH [k]η[k]
}

. (101)

To perform the eigendecomposition on the matrix R, let us 
define Y[k] = VH X[k], where V = [v0, . . . , vN−1] with the vi eigen-
vector of the matrix R. Since the matrix V is orthogonal, then 
VH = V−1. The decorrelation matrix V is the modal matrix for the 
symmetric matrix R. The first term in (101) can be presented in 
the following form

1

2σ 2
w

N−1∑
k=0

XH [k][Esσ
2
h R
(

Esσ
2
h R + σ 2

w I
)−1]

X[k]

= Esσ
2
h

2σ 2
w

N−1∑
XH [k]VVH [RVV−1(Esσ

2
h R + σ 2

w I
)−1

VVH X[k]

is 
ma

Es

2σ

1

2σ

wh
Rη

Rη

can
ma
un
var
cor
the

LG
G

wh
po
var
ram

log

ln

∂

∂σ

σ̂ 2
0

the
Tak
k=0
= Esσ
2
h

2σ 2
w

N−1∑
k=0

[
VH X[k]]H(VH RV

)[
V−1(Esσ

2
h R+σ 2

w I
)
V
]−1

VH X[k]

= Esσ
2
h

2σ 2
w

N−1∑
k=0

[
VH X[k]]H(VH RV

)(
Esσ

2
h VH RV + σ 2

w I
)−1

VH X[k].
(102)

Now we have that VH RV = �, where � = diag(α0, . . . , αN−1)

the diagonal matrix with the αi eigenvalues of the correlation 
trix R. Thus, we can rewrite (102) as follows:

σ 2
h
2
w

XH [k][R(Esσ
2
h R + σ 2

w I
)−1]

X[k]

= Esσ
2
h

2σ 2
w

N−1∑
k=0

YH [k]�(Esσ
2
h � + σ 2

w I
)−1

Y[k]. (103)

The second term in (101) can be presented as

2
w

N−1∑
k=0

XH [k]X[k] = N

2σ 2
w

M∑
i=1

λRxi, (104)

ere λRxi is the i-th eigenvalue of the sample covariance matrix 
of the observed sample η given by

= N−1ηηH . (105)

GLRT-GD. In the case of unknown parameters of the noise, we 
 replace these parameters by their maximum likelihood esti-
tes (MLE) under each hypothesis [3]. If the noise variance σ 2

w is 
known, we apply the GLRT-GD and obtain the MLE of the noise 
iance σ 2

w under consideration of the hypotheses H0 and H1, 
respondingly. Thus, the GLRT-GD test can be presented using 
 following form:

LRT
D (X) = p(X|H1, σ̂

2
1 )

p(X|H0, σ̂
2
0 )

, (106)

ere σ̂ 2
0 is the MLE of the noise variance σ 2

w under the hy-
thesis H0 and σ̂ 2

1 is the MLE of the GD total noise component 
iance under the hypothesis H1. The PU signal has stochastic pa-
eters owing to fading channels.

To define the MLE σ̂ 2
0 we take the logarithm of (94) to get the 

-likelihood function as follows:

p(η|H0) = −0.5N M ln 2πσ 2
w − 1

2σ 2
w

N−1∑
k=0

ηH [k]η[k]I. (107)

The MLE σ̂ 2
0 is obtained solving the following equation [3]:

2
w

ln p(η|H0) = − 1

2σ 2
w

[
N M −

N−1∑
k=0

ηH [k]η[k]I
]

= 0. (108)

Solution of (108) with respect to σ 2
w gives us

= 1

N M

N−1∑
k=0

ηH [k]η[k]I = 1

M

M∑
i=1

λRη i . (109)

We should apply the same procedure to find the MLE σ̂ 2
1 of 

 GD total noise component variance under the hypothesis H1. 
ing the logarithm of (95) we obtain
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ln p
(
Y = VH X|H1

)
= − N M

2
lnπ − N

2

M∑
i=1

ln
(

Esσ
2
h αi + σ 2

w

)

−
N−1∑
k=0

M∑
i=1

{VH
i X[k]}2

(Esσ
2
h αi + σ 2

w)
. (110)

Taking the first derivative of (110) with respect to σ 2
w and set-

ting it to zero we obtain the following equation

∂

∂σ 2
w

ln p(Y|H1)

= − N

2

M∑
i=1

1

(Esσ
2
h αi + σ 2

w)
+

N−1∑
k=0

M∑
i=1

y2
i [k]

(Esσ
2
h αi + σ 2

w)2

≈ 1

σ 4
w

[
M∑

i=1

N

2

(
Esσ

2
h αi + σ 2

w

)− N−1∑
k=0

M∑
i=1

y2
i [k]
]

= 0. (111)

We can use the following approximation

Esσ
2
h αi + σ 2

w ≈ σ 2
w (112)

in (111) since Esσ
2
h αi � σ 2

w in the case of the weak PU signal, 
i.e., the low SNR by initial conditions. We can simplify and rewrite 
(111) in the following form:

N Esσ
2
h

2

M∑
i=1

αi + N M

2
σ 2

w − N
M∑

i=1

λRxi = 0. (113)

Solving (113) with respect to σ 2
w we can define the MLE σ̂ 2

1
under the hypothesis H1:

σ̂ 2
1 = 2

M

M∑
i=1

λRxi − Esσ
2
h

M

M∑
i=1

αi . (114)

Appendix 2

We say that the random variable x has a chi-square χ2 distri-
bution with υ degree of freedom if its probability density function 
(pdf) is determined as

p(x) = cx0.5υ−1 exp(−0.5x), (115)

where c is a constant given by [50]

c = 1

20.5υ�(0.5υ)
, (116)

�(·) is the gamma function. The MGF general form for the chi-
square χ2 distributed random variable x is given by [33]

Mx(l) = E
[
exp(lx)

]= ∞∫
−∞

exp(lx)p(x)dx

= c

∞∫
0

exp(lx)x0.5υ−1 exp(−0.5x)dx. (117)

At υ = 1, the constant c can be presented in the following 
form:

c = 1
0.5υ

= 1√ . (118)

2 �(0.5υ) 2π
Assume that z1i [k] = ζ 2
i and z2i [k] = η2

i . The pdf for the ran-
dom variables z1i [k] and z2i [k] are defined by the chi-square χ2

distribution law with one degree of freedom [22]:

p(z1i ) = 1√
2π z1i σ

2
w

exp

{
− z1i

2σ 2
w

}
, z1i > 0, (119)

p(z2i ) = 1√
2π z2i σ

2
w

exp

{
− z2i

2σ 2
w

}
, z2i > 0. (120)

Introduce a new variable zi = z1i − z2i . The MGF of the random 
variable zi is given using the following formula:

Mzi (l) = E
[
exp(lzi)

]= E
{

exp
[
l(z1i − z2i )

]}
= E
[
exp(lz1i )exp(−lz2i )

]= E
[
exp(lz1i )

]
E
[
exp(−lz2i )

]
= Mz1i

(l)Mz2i
(−l). (121)

The MGF of the random variable z1i is defined in the following 
form:

Mz1i
(l) = 1√

2πσ 2
w

∞∫
0

exp(lz1i )z−0.5
1i

exp

{
− z1i

2σ 2
w

}
dz1i

= 1√
2πσ 2

w

∞∫
0

z−0.5
1i

exp

{
−
[

1

2σ 2
w

− l

]
z1i

}
dz1i . (122)

Introducing the variable gi = (0.5σ−2
w − l)z1i , after some math-

ematical transformations we can write

Mz1i
(l) = 1√

π(1 − 2σ 2
wl)

∞∫
0

g−0.5 exp(−gi)dgi . (123)

Based on definition of the gamma function [51]

�(x) =
∞∫

0

lx−1 exp(−l)dl, (124)

we obtain

∞∫
0

g−0.5
i exp(−gi)dgi = �(0.5) = √

π. (125)

Finally, the MGF of the random variable z1i is defined as

Mz1i
(l) =

√
π√

π(1 − 2σ 2
wl)

= 1√
1 − 2σ 2

wl
. (126)

The mean and variance of the random variable z1i can be de-
termined in the following form:

E[z1i ] = ∂Mz1i
(l)

∂l

∣∣∣∣∣
l=0

= σ 2
w , (127)

Var[z1i ] = E
[
z2

1i

]− E[z1i ]2 = ∂2Mz1i
(l)

∂2l

∣∣∣∣∣
l=0

− E[z1i ]2

= 3σ 4
w − σ 4

w = 2σ 4
w . (128)

By the analogous way, we can find that the MGF of the random 
variable z1i takes the following form:

Mz2i
(−l) = 1√

2
. (129)
1 + 2σwl
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Since {si[k]}M
i=1 are spatially correlated for the i-th antenna ar-

ray elements, the MGF of 
∑M

i=1 s2
i [k] is defined as

M∑M
i=1 s2

i [k](l) =
M∏

i=1

[
1 − Esσ

2
h αil
]−1

, (130)

where αi is the eigenvalue of the i-th spatial channel of the corre-
lation matrix R given by (2). Based on (126), (129), and (130), the 
MGF of the GD partial decision statistics TGD(Xk) is determined in 
the following form:

MTGD(Xk)(l)

=
M∏

i=1

[
1 − Esσ

2
h αil
]−1
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(l)
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2
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)−0.5M

= (1 − 4σ 4
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[
1 − Esσ

2
h αil
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. (131)

Appendix 3

The case 1: μ = 1, β = 1. We can rewrite (59) as

1

2
√

2π N M(E2
s σ

4
h + 4σ 4

w)

exp

{
−[THRGD − N M Esσ

2
h ]2

2N M(E2
s σ

4
h + 4σ 4

w)

}
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4
√

2π N Mσ 4
w

exp
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− THR2

GD

8N Mσ 4
w

}
= 0 (132)

or

1√
E2

s σ
4
h + 4σ 4

w

exp
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2
h ]2

2N M(E2
s σ

4
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− 1

2σ 2
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− THR2

GD

8N Mσ 4
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}
= 0. (133)

We can rewrite (133) in the following form

exp{− [THRGD−N M Esσ
2
h ]2

2N M(E2
s σ

4
h +4σ 4
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}

exp{− THR2
GD
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(134)

or as

exp
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2
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w)
+ THR2

GD

8N Mσ 4
w

}
=
√
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s σ

4
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w

2σ 2
w

.

(135)

Taking the natural logarithm, we obtain

−[THRGD − N M Esσ
2
h ]2

2N M(E2
s σ

4
h + 4σ 4

w)
+ THR2

GD

8N Mσ 4
w

= ln

√
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4
h + 4σ 4

w

2σ 2
w

. (136)

Taking into consideration that SNR in cognitive radio networks 
is very small, γ � 1 we can think 

√
E2

s σ
4 + 4σ 4

w/2σ 2
w → 1 and 
h
ln[
√

E2
s σ

4
h + 4σ 4

w/2σ 2
w ] → 0. After some mathematical transforma-

tions we obtain

E2
s σ

4
h × THR2

GD + 8N M E2
s σ

4
h σ 4

w × THRGD − 4N2M2 E2
s σ

4
h σ 4

w = 0.

(137)

Solution of the quadratic equation (137) is well-known and 
takes the form:

THRop
GD = −b ± √

b2 − 4ac

2a
, (138)

where

a = E2
s σ

4
h ; b = 8N M E2

s σ
4
h σ 4

w; c = −4N2M2 E2
s σ

4
h σ 4

w . (139)

Thus, the optimal threshold (138) takes a very simple form:

THRop
GDAWGN

≈ 2N Mσ 2
w . (140)

The case 2: μ = 1, β �= 1. If the noise power at the GD AF and 
GD PF outputs is differed the GD optimal threshold THRop

GD can be 
derived using the factor of proportionality β in the following form:

THRop
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. (141)

Using (57) we obtain the following result
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(142)

We can rewrite (142) as
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Taking the natural logarithm, we obtain
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Taking into consideration that SNR in cognitive radio networks 
is very small, γ � 1 we can think 
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Solution of the quadratic equation (145) is well-known where
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4
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4
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Substituting (146) into (138) we obtain

THRop
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√
2
(
1 + β2

)
. (147)

The case 3: μ �= 1, β = 1. Equation (88) can be simplified and 
we obtain
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Taking the natural logarithm of (150), we have

− [THRGD − N M(2μ − 1)Esσ
2
h ]2
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4
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√
(2μ − 1)2 E2

s σ
4
h + 4(μ − 1)2 Esσ

2
h + 4σ 4

w . (149)

Following the same previous steps and applying the approxima-
tion of low SNR, γ � 1 and after some mathematical transforma-
tions we obtain[
(2μ − 1)2 E2

s σ
4
h + 4(μ − 1)2 Esσ

2
h + 4σ 4

w

]× THR2
GD

+ 16N M Esσ
2
h σ 4

w(2μ − 1) × THRGD

− 8N2M2 E2
s σ

4
h σ 4

w(2μ − 1)2 = 0. (150)

Solving (150) will give us the required optimal GD threshold

THRop
GDAWGN

≈ 2(2μ − 1)N Mσ 2
w . (151)

The case 4: μ �= 1, β �= 1. Equation (65) can be simplified and 
we obtain
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(152)

Applying the same steps and after some mathematical transfor-
mations we obtain the following quadratic equation:
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By solving (153) we can present the GD optimal threshold for 
s case using the following form:

Rop
GDAWGN

≈ 2N M(2μ − 1)(1 + β2)

(μ − 1)2(1 + β)
. (154)

The normalized GD optimal threshold with the normalization 
tor N M is determined in the following form:

Rop
GDAWGN

≈ THRop
GDAWGN

N M
= 2(2μ − 1)(1 + β2)

(μ − 1)2(1 + β)
. (155)
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