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rbstract:- Perfonning robust detection with resource limitations such as low-power requirements or limited
pmmunicationbandwidth is becoming increasingly important in contexts involving distributed signal process-
agbasedon the generalized approach. One way to address these constraints consists of reducing the amount of
~taused by the detection algorithms. Intelligent data selection in detection can be highly dependent on a priori
aformationabout the signal and noise. In this paper, we discuss detection strategies based on the generalized
pproachto distributed signal processing with randomized data selection and analyze the resulting algorithms'
~erformance.Randomized data selection is a viable approach in the absence of reliable and detailed a priori in-
ormation,and it provides a reasonable lower bound on signal processing perfonnance as more a priori infor-
ftationis incorporated. The randomized selection procedure has the added benefits of simple implementation in
distributed environment and limited communication overhead. We analyze a binary hypothesis testing prob-

~musing the generalized approach to signal processing in the presence of noise, and determine several useful
!ropertiesof the generalized detector derived from the decision-making rule. We show that the use of the gene-
alizedapproach to signal processing in noise allows us to obtain the better wireless sensor performance in co-
aparisonwith the systems using the Neyman-Pearson and matched filter detection algorithms. The advantages
~d disadvantages of the of the generalized approach to signal processing with randomized data selection based
11distributedsensor networks are also discussed.

tey-Words: - Distributed signal processing, generalized detector, randomized algorithms, randomized samp-
ing,sensor networks

I Introduction
,\lithrecent advances in device and computing tech-
lologies,the wireless sensor networks are becoming
ncreasinglyubiquitous. Designing signal processing
!lgorithmsthat satisfy constraints imposed by these
!etworks is, therefore, becoming a necessity [1,2].
>pecifically,these algorithms need to be efficient
mdrobust, and in the case of battery-powered wire-
~ss sensor networks, they need to operate under po-

fer constraints [3,4]. In addition, there is usually the
Idded requirement of restricted communication ba-
Idwidthfor wireless sensor networks and, therefore,
!arefulmanagement of the wireless sensor network's
~atatransmission volume is important [5].

While it may be appropriate to design wireless se-
asor networks that densely populate a region with
/nicro-sensors during sensor deployment, operation
~fthe wireless sensor network may not require that
In wireless sensor network nodes be operating and
~ommunicatingat once. Indeed, for efficient operati-
on, extended wireless sensor network lifetime, and

efficient use of communication bandwidth, it may be
desirable to select a subset of nodes to communicate
at any fixed time [6]. The selected subset changes
over time, varying usage among the nodes to extend
their effective lifetime.

An appropriate signal processing algorithm based
on the generalized approach to signal processing in
noise [7-11] for node subset selection in a densely
populated wireless sensor network can be highly de-
pendent on the apriori infonnation about the charac-
teristics of both the signal and noise for a specific
task or environment, and, consequently, it would be
unreasonable to attempt to fonnulate a generic opti-
mal procedure. In this paper, we explore the generali-
zed approach to distributed signal processing with ra-
ndomized data (node) selection in wireless sensor ne-
tworks. Specifically, we abstract and simplify the
problem by considering nodes as only communica-
ting data for a signal processing problem. We use the
average rate at which an individual node is included
in the selected subset as the basic design parameter.
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The selection reduces communication bandwidth re-
quirements by limiting the amount of data transferred
between nodes. Under the assumption that communi-
cation dominates the energy usage of the nodes, the
wireless sensor network lifetime increases as this av-
erage rate decreases. Using these statements, we con-
sider randomized data selection and analyze the wi-
reless sensor network performance as a function of
this average rate for detection algorithm based on the
generalized approach to signal processing in noise.

Distributed wireless sensor networks are compo-
sed of interacting hardware and software systems.
The energy efficiency of the wireless sensor net-
works can be improved by modifying the hardware
[12] or any of the algorithms, such as data routing
[13], source coding [14,15], or signal processing. In
this paper, we focus on data selection based on the
generalized approach to signal processing in noise as
an algorithmic approach to improving the wireless
sensor network's energy efficiency. Similar strategi-
es have been used as a design for efficient systems in
such diverse areas as filter approximation [16], stati-
stical regression [17], and multiple-input multiple-
output wireless communication [18,19]. Selection,
by reducing the amount of communication congesti-
on throughout the wireless sensor network and avoi-
ding the computational burden of signal processing
all available data, relieves two major sources of ener-
gy dissipation. Since we are concerned primarily
with the selection algorithm and its impact upon sig-
nal processing performance, we do not attempt to qu-
antify the energy savings because it would be highly
dependent upon specific algorithms or hardware pro-
perties.

While data selection algorithms accounting for
many aspects of the wireless sensor network's state
can be useful in practice, we choose a generic appro-
ach requiring limited a priori information and com-
munication overhead. Specifically, we consider a ra-
ndomized data selection strategy. This approach le-
ads us to useful signal detection algorithms based on
the generalized approach to signal processing in noi-
se in distinct areas such as estimation, hardware fai-
lure modeling, low-power design [20], and theoretic-
cal computer science [21].

2 Selection of Data
Our analysis focuses on signal processing procedures
using data collected in a single time slot. We assume
that each measurement is assigned an identifier index
i, arbitrary chosen between I and N, where N is the
total number of networks nodes. Subject to this mo-
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del, the total data available in time slot rn is denoted I
by I

XI (rn)

X(rn)=rx2(rn) (I)

xN(rn)

Under randomized selection rule, the decision to se-
Ilect measurement xa (rn) depends on the outcome of

an indicatorrandomvariabledenoted qa (rn).Thera-
ndom variable is independent of all other indicator I

random variables and from other physically measur- r
able quantities available to the detector. In our mo-

I

'

del, each measurements in the current time slot is se-

lected with the probability Pq,i.e., qa(rn)has the I
probability mass function

{

Pq, q=1
fqa(m)(q)=

(1- ) =0 (2)Pq, q .
This selection rule reduces the expected complexity

of the detectorimplementationby a factor of Pq.

The randomly selected data vector, Xq (rn),can be
represented by the equation

Xq (rn)=Q(rn).X(rn) . (3)
Here, X(rn) is the data 'vector defined in (I), and
Q(m) is a Nx N diagonal matrix with thei -th entry

given by Qii (m) =qi (m). Consequently, the vector

Xq (rn) is N-dimensional with each entry being either
zero or a data measurement. In each time slot rn, the

number of nonzero entries of Xq (m) is a random va-
riable, which we denote by K(rn). Prior to discuss-
ing the specific detection problems, we examine the
signal statistics for Xq (rn).Since the generalized de-
tector only receivers a portion of the data, we must
base our signal processing algorithm based on the
generalized approach to signal processing upon the
conditional density for Xq (rn)given Q(m)=Q. To
establish the notation for the conditional density, let
the set

S(rn)={jIQi/m)=I} (4)
denote the selected measurements in time slot rn. If a

particular realization of this set is S ={j] ,j2,...,jK},

the conditionaldensity for Xq (rn)is thejoint density

for xi, (m),x), (m)"",xiK (m). The indicator random
variables are independent of X(rn), so no useful in-
formation about the signal is gained by observing
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a

Q(m).For notational convenience, we will denote

theconditional density of Xq (m) given Q(m) =Q by
theexpression

fXq'Q (X I Q)

with the dependence on m understood.

3 Distributed Signal Processing
Theproperties of a wireless sensor network strongly
influencethe choice of appropriate distribute signal
processingalgorithms based on the generalized app-
roachto signal processing in noise. Important variab-
les influencing this choice include the number and
densityof nodes, the area covered by the wireless se-
nsor network, available information about extremal
environment, and the communication capabilities of
thewireless sensor network.

Randomized data selection may be an attractive
approach to distributed signal processing based on
thegeneralized approach to signal processing in a va-
riety of situations. For example, many simple nodes
maybe densely distributed throughout the extent of
the wireless sensor network. Additionally, no a pri-
ori information about where targets are likely to ap-
pear may be available to aid the sensor selection al-
gorithm.Due to the high node density, data from nei-
ghboringnodes can be highly redundant. In this situ-
ation,randomselectionwitha smallvalueof Pq can
leadus to acceptable detector performance, while li-
miting the energy dissipated by communication of
sensor data through the wireless sensor network. Ad-
ditionally, the randomized selection procedure avo-
ids computational or communication overhead that
maybe incurred from more complicated iterative se-
lection procedures [22], or from centralized coordi-
nation of sensor selection.

Randomized selection is compatible with common
architectures for ad hoc wireless sensor networking.
Many wireless sensor networks use a combination
local c1ustering(where a group of nodes communica-
te with a sink) and multihop routing in their wireless
sensor networking protocols. Clustering can be com-
bined with randomized data selection; in every time
slot, each node in the cluster randomly determines
whether to transmit its sensor measurement to the
sink. The selection procedure limits the expected am-
ount of data processed by each local sink. In multi-
hop routing, each of selected sensor measurements
follows a path through several nodes in the wireless
sensor network. Any node in the wireless sensor net-
work sees a random num routing, each of selected
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(5)

sensor measurements follows a path through several
nodes in the wireless sensor network. Any node in
the wireless sensor network sees a random number of
packets from an individual time slot. Thus, if neces-
sary, any node in the wireless sensor network can use
the signal detection algorithms based on the generali-
zed approach to signal processing in noise. Finally,
note that the techniques we use to adapt the generali-
zed detector to fluctuations in the size of Xq (m) can
be applied to situations where unreliable sensor or
communication hardware lead to intermittent loss of
data in the wireless sensor network.

4 Detection of Signals
Let us analyze the interaction of randomized selecti-
on and signal detection in a background of additive
Gaussian noise. The detector based on the generaliz-
ed approach to signal processing in noise[7-11] from
a binary hypothesis testing model is the likelihood
ratio test. Test comparesthe likelihoodratio L(X),
defined as the ratio between the conditional probabi-
lity distributiondensitiesfor X(m) ,witha fixed thre-

shold Kg. If the generalized detector observes X in a

region of sample space where L(X);:::Kg, it makes

the decision"a yes" signal- if =HJ . Otherwise, it

decides "a no" signal - if =Ho . We denote decisi-
on rules of this form with the notation

L(X)?Kg => HJand L(X)<Kg => Ho.(6)

Our analysis of the likelihood ratio test highlights
two key issues inherent to randomized data selection.
First, we discuss the binary hypothesis test, and ac-
count for random selection in its statistical model.
Second, we suggest low-complexity detectors based
on the generalized approach to signal processing in
noise that adapt to fluctuation in the amount of selec-
ted data. Additionally, we consider the robustness of
the generalized detector to inaccuracies or unknown
parameters in the a priori model for target signal's
probability distribution density. While this issue is
not directly related to random sampling, it illustrates
the challenging signal processing environment in
which the generalized detectors often operate. In or-
der to derive useful properties of the likelihood ratio
test in the presence of random selection, we impose
restrictions on the statistical model for the target sig-
nature. To balance the generality of the signal model
with its special statistical structure, we assume that
the probability distribution density of the target sig-
nal is symmetric about the origin of the sample spa-
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ceoWe shall refer to random vectors that satisfy this
condition as even random vectors or even-symmetric
signals.

This signal model establishes a useful structure on
the probability distribution density of the signal, ena-
bling us to determine key properties of the likelihood
ratio test. Additionally, the signal model is broad en-
ough to model many interesting target signatures.
For example, a sinusoid with a unknown, uniformly
distributed phase satisfies the condition as does a ze-
ro-mean, Gaussian random vector with a known co-
variance matrix in the following definition: an N-di-
mensional random vector S(m) is referred to as even

if, for every So E 'f(,N, its probability distribution de-

nsity function satisfies the condition is (S 0) =
is (-s 0) . The general binary hypothesis test for sig-

nals in the additive Gaussian noise obeys the follow-
ing statistical model:

{

X(m) =o(m),
Ho:

'I1(m) =01 (m),

and

{

X(m)=S(m)+o(m),
HI:

'I1(m)=oJ(m),

where oem) and o( (m) are N-dimensional, zero-me-

an, Gaussian random vectors with the variance 0';.

The vector 0 I (m) is the additional (reference) and
uncorrelated with the vector oem) noise. It is a pri-
ori known "a no" signal in the reference vector
oJ (m) [7-11]. The signal vector S(m) has an even-
symmetric probability distribution density. Finally,
we assume that S(m), n(m), andn 1(m) are indepe-
ndent random vectors. This model describes the stati-
stics of the data without randomized selection.

In the presence of randomized data selection, the
generalized detector has access to the indicator rand-
om variables in Q(m) and processes the subset of

the available data contained inXq (m). The likeliho-
od ratio for the generalized detector with randomized
selection can be expressed as

ix QIH,(Xq,Q IHI)
L(X Q) = q'

q' iTl,QIHo(l1,QIHo)

= iXqIQ,H,(Xq IQ, HI) . iQIH,(Q IHI) - L(X IQ)
iTlIQ,Ho(111 Q,Ho) q
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The simplification in the likelihood occurs because
the indicator random variables are independent ofthe
hypotheses Hi,

Since conditioning upon Q(m) does not affectthe

selected data in Xq (m) , the detection problem based

upon Xq (m) and Q(m) reduces to an unconditional
detection problem for the data associated with the
nonzero indicator random variables. For example,if
three pieces of data are available, there are eightpos-
sible arrangements of the indicator random variables.
If measurements 1 and 2 are selected in time slotm,

the generalized detector must take a decision if bas-
ed upon the joint probability distribution densities

fXqIQ,H(XI1,2,Ho)=fx"x2IH(x"x2IHo) (10)
and

(7)

fXqIQ,H(Xll,2,H1)==fx"X2IH(X"X2IH1). (11)
Likewise, if measurements 2 and 3 are selected, the

decision if is determined from !X2,X3IH(X2,X3IHo)

and fX2,X3IH(X2,X3IHI).

Based upon (9), the likelihood ratio test for Xq(m)

and Q(m) reduces to the comparison of L(Xq IQ) to
a fixed threshold. Under the use of optimal detectors
based on classical and modern signal detection theo-
ries, while the test is optimal under the Neyman-Pe-
arson detection criteria, it poses some practical prob-
lems. First, determining the threshold can become
computationally complex when there is a large amo-
unt of data available for selection. Under the use of
the detector based on the generalized approach to si-
gnal processing in noise, determining the thresholdis
independent of a large amount of data available from
selection. In this case, the threshold is defined bythe
background noise of the generalized detector, andis
not computationally complex. The threshold that ac-
hieves a desired false alarm rate PF under the useof
the generalized detector is determined by inverting
the equation

PF(Kg)= LPr[L(Xq»Kg IQ,HoJ. (12)
Q

If N samples of data are available, there are 2N terms

in the summation. The functions of the threshold Kg

given by (12) may be easily parameterized in compa-
rison with the optimal detectors based on classical
and modern signal detection theories. Second, since
the threshold Kg is constant while Q fluctuates,un-
der the use of detectors based on classical and mod-

(8)

(9)
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em signal processing approaches, the conditional fal-
se alarm rate

PF(Q,Kg)=Pr[L(Xq»Kg IQ,Ho] (13)
fluctuates as well. In a situation where actions taken
following a false alarm are costly, however, this fluc-
tuation may not be desirable, since it is induced by
the random data selection rather than an information-
bearing signal. Under the use of the generalized dete-
ctor based on the generalized approach to signal pro-
cessing in noise, the conditional false alarm rate is fi-
xed both for each realization Q and for all available
data. Therefore, we have not any constraints in the
conditional false alarm rate under the use of the ge-
neralized detector in the case of distribute signal pro-
cessing with randomized data selection in wireless
sensor networks.

5 Detection of Sinusoidal Signal
Consider an example - detecting a sinusoidal signal.
We consider detection of a sinusoidal signal in the
presence of randomized data selection. Our analysis
illustrates the difficulties associated with detection in
the presence of uncertainty in the target signal. Con-
sider a set of data generated by sampling a signal at
several locations, denoted by Vj, i = I,...,N .We shall
assume that these locations can be modeled by a set
of independent, identically distributed uniform rand-
om variables over an interval significantly larger in
comparison with the sinusoid's wavelength.

Let the hypothesis H 0 denote the state in which

the sinusoid is absent, and the hypothesis HI denote
the state when it is present. The i -th measurement
under each hypothesis is given by

Ho:
{

xj=nj

.

,

17i=nl,
(14)

and

{

(
2ffV.

)Xi =A cos --2... + rp + nj ,
HI: A.

17i= nl; .

The random variables ni and nl; are the zero-mean

Gaussian random variables with the variance 0";.

The probabilitydistributiondensityforXq (m), con-

ditioned upon Q( m) and the hypothesis H 0 is defin-

ed by the Bessel function of the second order of ima-
ginary argument under the use of the generalized de-
tector based on the generalized approach to signal
processing in noise:

(15)
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/, ,(z)=~Ko(-=Z)
n,-n 21C0"n 20" n

as N~O (16)

or
pz2

1 If - 40"4
/, ,(z)=~ -.e n as N~DO .(17)

n,-n 20"n ff

In order to determine the likelihood ratio and the re-
sulting generalized receiver operating characteristics,
we also need the probability distribution density for
Xq (m), conditioned upon Q(m) and the hypothesis

HI . This conditional probability distribution density
depends, in turn, on the joint probability distribution
density of

21CV.

Wi=~+ rp (18)
for the selected data in S(m). The probability distri-
bution density for the signal is a function of the joint
probability distribution density of the phase random
variables. Since the signal and noise are independent
under the hypothesis HI , the overall conditional pro-

bability distribution density for Xq (m) is the convo-
lution of the signal probability distribution density
and the noise probability distribution density. The
determination ofthe joint probability distribution de-
nsity for the phase random variables is a key step in
this calculation.

Since {Vi} are independent and uniform over a la-

rge interval, we can approximate {Wi}as indepen-
dent, identically distributed uniform random variab-
les over the region [-ff,ff]. Using this model, we
can analyze the form of the likelihood ratio test for
the model suggested in (14) and (15). Here, we assu-
me that the sink knows the value of A exactly. The
signal is a(m), where a(m) is a K-dimensional rand-
om vector. Each entry takes the form

ai(m)=Acos(wJ. (19)
Based upon our approximation, the probability distri-
bution density for a(m) is determined in the follow-
ing form

faIK(a[K)= fI u(A-lai I) ,
i~11C~A2- a;

where u(.) denotes the unit step function. This pro-
bability distribution density is nonzero over the K-di-
mensional hypercube of side A. For fixed K, we de-
note the randomly selected data by Xx (m) .When ap-
plied to a vector, the subscript K indicates its dimen-
sion. This does not contradict our earlier notation,

(20)
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where the subscript of a scalar random variable indi-
cated the identity of the measurement. The dimensi-
on subscript is always attached to a vector, not a sca-
lar. This random vector lists the selected data conti-

guously, rather than with zeros as in Xq (m). For no-
tational convenience, we assume that measurements

1 to K are selected, so XK =[XI,X2,...,XKf. This
notation does not reduce the applicability of the ana-
lysis, since our modeling assumptions make the mea-
surements statistically indistinguishable. Their joint
statistics depend only on K and not on the measure-
ment identifiers. The resulting signal model has the
following form

{

XK(m)=n(m),
Ho:

lh(m)=n](m)
(21)

and

{

XK(m)=a(m)+n(m),
HI:

lh(m)=D}(m).

Based on these probability distribution density fu-
nctions, we can construct the likelihood ratio test for
fixed values of K and A. The conditional probability
distributiondensityunder the hypothesis H 0 is zero
mean and determined by (16) or (17). Under the hy-
pothesis HI, the conditional probability distribution
density is the convolution of (16) or (17) with the
probability distribution density for a(m) given in
(20). The conditional probability distribution density
for XK (m) under the hypothesis HI can be written
in terms of a one-dimensional (1- D) convolution,
since both conditional probability distribution densi-
ties are separable. The conditional probability distri-
bution density takes the following form

fXKIK.HI(XIK,H]) = folK(X IK) * fni-n2lK(X IK)

= Il
K =

f u(A-1 a; I)~K [(2; -aY ]~ 2 2
2 2 0 2 2

;=1 -=1'( A - a; 1'((J'n (J' n

as N~O

(22)

(23)
or

fXKIK.HI(XI K,HI) = folK(X IK) * fni-n2lK(X IK)

= fI}u(A~la; I~ 12 rP.ej(:~;;)2
;=1 -=1'(~ A - a; 2(J'n f;

as N ~ 00 (24)
Substituting (23) and (24) in terms of (16) and (17)
in (9), we can obtain the likelihood ratio test for the
generalized detector based on the generalized appro-
ach to signal processing in noise under the distribut-
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ed signal processing with randomized data selection
in wireless sensor networks.
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Fig.l. Detection performance comparison: 1- gene-
ralized detector; 2 - Neyman-Pearson detec-
tor; 3 - matched filter.

Typically, the performance of the generalized de-
tector is shown by operating characteristic, which
plots the detection probability PD as a function ofthe

false alarm probability PF (see Fig. 1, the number of
Monte Carlo realizations used was 10 000). Referen-
ce to Fig. 1 shows us a great superiority under the
use of the generalized detector in distributed signal
processing under randomized data selection in wire-
less sensor networks in comparison with the matched
filter and Neyman-Pearson detection algorithms.Both
PD and PF can be calculated by integrating, respec-
tively, the conditional probability distribution densi-
tiesfxxIK,HI(XIK,HI)and fXKIK,Ho(XIK,Ho) over

the if = HI decision region. Thus, the operating cha-
racteristic of the generalized detector is generated as

the threshold ranges over 0::;;Kg < 00. It can be
shown that the operating characteristic of the genera-
lized detector calculated from the likelihood ratio test

gives the maximum achievable PD for each false al-

arm rate 0::;;PF ::;;1 .
For K = 1, the generalized detector has an impor-

tant universality property over the set of binary hy-
pothesis tests for A > O. The threshold Kg that achie-

ves a certain PF can be determined in terms of the Q

function and 40": . Since the threshold Kg can be de-
termined without knowledge of the wave amplitude
A, the likelihood ratio test for the generalized detec-
tor based on the generalized approach to signal pro-
cessing in noise under the distributed signal process-
sing with the randomized data selection in wireless
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sensor networks is a uniformly most powerful test.
For such test, the decision regions that maximize Pn

subject to a constraint onPF are invariant to the actu-

al value of the parameter A. The actual value of Pn,
however, does not depend on A.

The contrast between the likelihood ratio test for
K =I and K =2 indicates some implementation chal-
lenges in the presence of uncertain signal models and
random data selection. When K > I, the likelihood
ratio test for XK(m) is not a function of the received
data magnitude. Since the likelihood ratio is increa-
sing in all directions, the likelihood ratio test will de-

clare H=H0 in a simply connected region contain-

ing the origin. Outside this region, it will declare if
=HI, Thus, the two-dimensional (2 - D) test deter-
mines a closed curve that gives the boundary betwe-

en the decision regions for H =Ho and H =HI, The

implementation of the likelihood ratio test for the ge-
neralized detector based on the generalized approach
to signal processing in noise under distributed signal
processing with randomized data selection in wire-
less sensor networks is more complicated in two di-
mensions than in one. Finally, the likelihood ratio
test's decision regions depend on the value of K. The
shape of the decision regions varies as K changes.
Evidently, the larger values of K lead to more comp-
licated decision regions. For example, the decision
regions for K =2 can be complicated sets in the
(xI> X2) plane.

The difficulty in determining the decision regions
under uncertainty in A and K makes the exact likeli-
hood ratio teston XK (m) challengingto implement.
First, the fluctuation in K means that the generalized
detector must be able to quickly adapt the decision
regions for each time slot. Second, potential uncer-
tainties in the target signal probability distribution
density prevent the generalized detector from deter-
mining the exact likelihood ratio test. These challen-
ges in the example detection problem persist for the
general even signal model.

6 Conclusion
In this paper, we propose the generalized detector ba-
sed on the generalized approach to signal processing
in noise under distributed signal processing with ran-
domized data selection in wireless sensor networks
as a technique to cope with limited communication
and computation resources in distributed wireless se-
nsor networks. To illustrate the impact of randomiz-
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ed selection on signal processing by the generalized
detector performed by wireless sensor network, we
focus on a binary hypothesis testing problem: detec-
tion of a random vector with an even-symmetric pro-
bability distribution density in the Gaussian noise.

The detection problem shows several issues inher-
ent in randomized data selection. First, understand-
ing the impact of randomized data selection on the
signal statistics is required to determine the new ge-
neralized detector structure. Our assumptions about
the wireless sensor network's communication proto-
cols allow us to design the generalized detector upon
the conditional densities of the signals. Second, the
fluctuation in the size of the selected sensor subset
presents implementation challenges for the generali-
zed detector. It does not need to perform the likeliho-
od ratio test for a large number of potential subsets.
Finally, we consider the impact of uncertainties in
the a priori model for the signal probability distribu-
tion density on the generalized detector. This issue
was independent of randomized data selection, but it
describes the potential applications of the wireless
sensor networks. They may often be used in situati-
ons where the coefficients of the signal probability
distribution density are not known in advance.

The proposed likelihood ratio test for the generali-
zed detector rests upon the statistical model for the
noise. In practice, the noise is not Gaussian, as a rule.
The generalized signal detection algorithm, however,
serves as a template for designing generalized detec-
tors for use with random sensor selection. Generaliz-
ed detectors assuming different noise statistics will
likely require similar approximations for the decision
thresholds. Overall, the generalized signal processing
algorithm serves as a low-complexity baseline for
evaluating the performance of sensor selection and
generalized signal detection algorithms in wireless
sensor networks.

Future work on distributed signal processing and
sensor selection can take many directions. The analy-
sis of random sensor selection can be expanded to
improve the performance baseline it provides. The
selection algorithm can be modified to account for
selection over multiple time slots or selection jn the
presence of colored noise. Both cases introduce an
addjtional degree of freedom to the basic approach
analyzed here. Additionally, exploring the interaction
between selection and routing or distributed source
coding algorithms may provide another interesting
technique for balancing signal processing performan-
ce with communication cost.

Finally, the implementation of the generalized de-
tector under distributed signal processing with the ra-
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ndomized data selection may be useful in practical
employment of wireless sensor networks. The issues
of robustness, complexity, and energy efficiency are
significant in this new environment, and randomized
selection provides a way to balance these performan-
ce criteria. The use of the generalized detector under
distributed signal processing with the randomized
data selection has several implications for real syst-
ems. First, it gives a performance baseline to algori-
thms based upon more detailed state information and
statistical models. Second, it may provide a desirable
operating point in the tradeoff between robustness,
complexity, and performance. The generalized detec-
tor with random selection requires no extra commu-
nication to collect the wireless sensor network state,
and is robust to a wide class of signal models. While
it will likely produce performance inferior to signal
processing algorithms based upon detailed models, it
may be more robust to modeling errors, and may stri-
ke a desirable balance between performance and co-
mplexity. Third, the generalized detector with rando-
mized data selection is compatible with the cluster-
based distributed signal processing techniques propo-
sed for wireless sensor networks. In wireless sensor
networks where nodes cooperate in local clusters, the
generalized detector with random data selection can
be applied in each cluster. Finally, the generalized
detector with random data selection performance de-
pends only upon a single parameter. While we focus-
ed on single-shot processing in this paper, these sig-
nal detection algorithms based on the generalized ap-
proach to signal processing in noise will be used over
time. The selection procedure must balance the infor-
mation quality in an individual time slot with longe-
vity of the wireless sensor network. Since the genera-
lized detector with randomized data selection perfor-
mance depends on a single parameter, it may be pos-
sible to illustrate the tradeoff between performance
and wireless sensor network lifetime in appealing
way through further analysis of this class of sensor
selection algorithms.
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