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Abstract: -We consider M-ary wireless sensor network based on the generalized approach to signal processing
in the presence of noise [1-5] with K sensor nodes over a space diversity channel, consisting of a single trans-
mit antenna for each sensor node and multiple receive antennas. We examine the phase coherent wavefront fad-
ing model. In the case of wavefront fading, the fade is constant across the face of the receive antenna and we
can associate an angle of arrival to the signal. We present a variation of the mutiple-signal classification
(MUSIC) algorithm [6] for estimating this parameter and use it to form a spatial beam. We develop the detecti-
on strategy based on the generalized approach to signal processing in noise. We then consider blind extensions
of the generalized detector based on subspace tracking, which do not require a prior model for the interfering
sensor node's signals

Key-Words: - Antenna arrays, blind detection, direction of arrival (DOA) estimation, fading channels,
multiuser detection, space-time processing, generalized detector.

1 Introduction
M-ary modulation schemes are commonly employed
on noncoherent channels in wireless sensor networks

For example, Walsh codes are used on uplink of the
channel, which are decoded noncoherently. This is
just one example of orthogonal multipulse modulati-
on, and noncoherent frequency-shift keying is ano-
ther. Other common techniques employ differential
phase encoding and then perform detection by proce-
ssing the received data two symbols at a time. The
effective model employed in such detection is of an

M2 -ary constellation with each two-dimensional tra-
nsmit vector corresponding to the present and previo-
us information bit [7].

In this paper, we consider several extensions of the
noncoherent multiuser detection results of [4,8-10]
for M-ary wireless sensor networks to the multiple-
antenna fading channel. We consider the basic mo-
del: the fading process for each sensor node is assu-
med constant across the face of the array. This is cal-
led coherent wavefront fading.

It is assumed that the fading coefficients remain
constant over the duration of each symbol. They are,
however, allowed to vary arbitrarily (even indepen-
dently) from symbol to symbol. Such a block fading
model is applicable to rapidly fading channels and/or
to frequency-hopping and block-interleaved wireless

sensor network systems. The multiuser wireless sen-
sor network channel is further assumed to be synch-
ronous, but this assumption may be relaxed when the
blind generalized detector is employed.

For the coherent wavefront fading channel consi-
dered in this paper, we are able to associate a directi-
on of arrival (DOA) with each sensor node and emp-
loy a detection rule based on the generalized appro-
ach to signal processing in the presence of noise,
which exploit this structure. The detection scheme is
extension of the generalized detector presented in [1-
5], the main difference being the inclusion of the
DOA. We use a technique for estimating the DOA
discussed in [11] which is inspired by the multiple-
signal classification (MUSIC) algorithm [6].

The performance of the generalized detector is an-
alyzed through the use of a union upper bound on the
symbol error probability, drawing in part on the asy-
mptotic analysis techniques of [12] together with so-
me geometrical insights. It is shown that the perfor-
mance of the generalized detector achieves the expe-
cted dependency on the signal-to-noise ratio (SNR).
In other words, falls of like (l/SNR) for the wave-
front fading channel so long as there is some separa-
tion between the signal subspace and the interference
subspaces of the other sensor nodes. Finally, a blind
version of the generalized detector is specified.
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2 Antenna Array Model
Our convention will be that K sensor nodes, each co-
mmunicating from an M-ary signal set and a single-
antenna transmitter, are communicating with an L-
element receiver. The orthonormal basis for the KM

signaling waveforms has cardinality N S;KM. At
the £ -th antenna element we receive the continuous-
time signal

K

Xf (t) =L af (k)am, (t) + nf (t) ,
k=l

where am (t) is the signal transmitted by sensor no-,
de k from a set of cardinality M, af (k) is the fading
coefficient for the path connecting sensor node k to
the £ -th antenna, and nf (t) is circularly symmetric
complex Gaussian noise.

By matching to an N-dimensional orthonormal ba-

sis, {un(t)}~, for the joint signal space spanned by

all of the signals, {am (t)}, we obtain the measure-,

ment Yf E 9\N
K

Yf =Lat (k)gm, (k) + Df
k=l
K

= Laf(k)G(k)b(k)+Df .
k=l

Here, gm, (k) is a vector containing the expansion

coefficients for the k-th sensor node's mk -th signal

{gm,(k)}n = Jam, (t)u:(t)dt . (3)

The matrix [G(l), G(2),..., G(K)] contains the signal
vectors for each sensor node with

G(k) =[gl (k), gz (k),..., gM (k)] . (4)

The vector [bT(I),bT(2),...,bT(K)f, and MKxl
vector with each b(k), a column of the MxM ide-

ntity matrix, selects the signal transmitted by sensor
node k. That is,

G(k)bm(k)=gm(k) . (5)

The additive noise, Df E 9\N ,is a circularly symmet-
ric white Gaussian vector with correlation

M[nfD;] =azIN . (6)

If we are interested in sensor node k, we may re-
write our model with respect to this sensor node as

Yf=afgm+Spf+Df, (7)
where we have dropped the dependency on k and ha-
ve collected all of the multiple-access interference
(MAl) into the vector

K

Spf = L af (k')gm" (k') .
bk'

Thus, the matrix S contains all M(K -1) interfering

signal vectors, and the vector Pf E 9\M(K-l) is form-

ed by stacking the vectors af (k')b(k') for k:j:.k'.

We may now collect the measurements into the
LN x 1 vector

(8)

(1) [ T T T ]T mLN
Y=Yl'YZ""'YL E.;I\ , (9)

I.e.,
K

Y= LJIL @G(k)].[a(k)@b(k)]+D
k=l

=TC+D, (10)
where

T=[IL @G(1)...IL @G(l)] (11)
contains all of the sensor node's KLM space-time si-
gnaling vectors,

a(k) = [a](k)...aL(k)f , (12)
and

a(1) @ bel)

C= (13)

(2)

a(K) @b(K)

The symbol @ denotes the Kronecker product of
two matrices [13].

We can rewrite this model with respect to a parti-
cular sensor node as

Y=[IL @gm]a+[IL @S]p+n

='IIma+Sp+n, (14)
where

{

'11m=IL @gm ,

S=IL @S ,

P =[pr"..,pry E 9\LM(K-l) ,
and we have dropped the explicit dependence of the-
se parameters on k.

We note that the measurement space has dimensi-
on LN, whereas the signal and interference lie in su-
bspaces of respective dimensions Land L(K -1).

We see that low space dimension L can be compen-
sated for by a large time (or spreading) dimension N,
or vice versa, for separating signal and interference,
provided these degrees of freeciom are exploited with
an appropriate signal design.

(15)

3 Coherent Fading Channel Model
Consider the case of phase-coherent fading, meaning
that the fading parameters for each sensor node are
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modeled as

ap(k)=a(k)sp«(Jk) , (16)

where a(k) is a constant complex fading parameter

across the array, (Jkis the DOA of the k-th sensor no-

de's signal relative to the array geometry, andsp «(Jk)

is the response of the .[ -th antenna sensor to a nar-

rowband;signa1 arriving from (Jk . The similar model
was discussed in more detail in [13].

In this case, the model of (5) simplifies to
K

y= Ia(k)[IL <8>gm,(k)]. S«(Jk)+ n ,
k=1

(17)

where

S«(Jk)=[Sl «(Jk)"",SL«(Jk){ (18)

is a steering vector in direction (Jk' If the DOA for
each of the sensor nodes is known, we may simplify
our model with respect to sensor node k as

y=ahm +Rp+n , (19)

where hm(k) is the following signal vector, defined

by its signal matrix f/lm(k) and arrival angle (Jk

hm(k)=[IL <8>gm(k)]. S«(Jk)= f/lm(k). S«(Jk) . (20)
R is the matrix containing the (K -l)M interference

vectors {hme (k')} for k'1; k, and p is formed by

stacking the vectors a(k')b(k') for k'1; k, i.e.,
K

RP= La(k')hme(k') .
k'#

Notice that {hm(k)}, the DOA-resolved signals

should not be confused with {gm(k)}, the original,

unresolved signals.
Except for the important details about the space-

time structure of h m and R, our model is now algeb-
raically identical to that considered in [1-5], and the
generalized detector contained there may be used on
this channel without essential modification. The inte-

rference matrix, R, is the space-time (or, more accu-
rately, the space-dimension) matrix formed by the

vectors [IL <8>gme(k')]'S«(Jk')for k'1;k. If we cho-

ose the basis functions to be time-delayed versions of
a common pulse shape, as in direct-sequence code-
division multiple access (DS-CDMA) or time-divisi-
on multiple access (TDMA) wireless sensor net-
works, we can consider R to be the space-time inter-
ference matrix. In general, the basis functions need
not have such an interpretation. They could be cho-
sen to efficiently manage bandwidth, for example.

(21)

4 Generalized Detector
The space-time generalized detector (GD) is discuss-
ed in more detail in [5]. In the case at hand, the deci-
sion-making rule is defined by maximizing the like-
lihood functions

fm(y)= ~ LNexp{~IIY-hma-RPI12}
(1lG' ) G'

(22)
over the unknown parameters a and p. The result is

~ J2hmPty' -y'Pty+n;Ptn]12
mCD = arg max 2

m lip t h mII

=argmax[2hmPP""-h Y'-Y'PP""-h y+n;Pp""-h n1],m R'" Rm Rm

(23)
where n 1 is a vector of an additional noise source
according to the generalized approach to signal pro-
cessing in the presence of noise [1-5]. The right
most form of (23) shows that the GD to be a matched
subspace detector [14], using the projection onto the
one-dimensional subspace spanned by the vector

Pthm. The Nx N projection operator onto this

subspace is denoted by PP""-h.
R m

The GD detector chooses the signal, h m' which
has the greatest direction cosine with the measure-
ment in the subspace orthogonal to the interference,

< R >.1 . This detector is invariant to complex sca-
ling of the data and to translations of the data in the
interference subspace, < R > . A more thorough dis-
cussion of the geometry and invariances of the GD
detector is presented in [5].

The GD detector for wavefront fading bears com-
ment, for it reveals an important decomposition of
the space-time receiver. To make this point, let us
rewrite the quadratic form in (23) as

argmax[2hmPP.!.h y' -Y'PP""-h y+n;Pp""-h nj]=m Rm R'" R'"

{ 2s' «(Jk)[IL <8>gm]*piy
arg max .1

m s'«(Jk)[IL <8>gm]*PR[IL <8>gm]S«(Jk)

- y'piy
s'«(Jk)[IL <8>gm]*pi[IL <8>gm]S«(Jk)

.p .l

DI RD] }
+ s'«(Jk)[IL <8>gm]*pi[IL <8>gm]s(8k) .

(24)
Thus, the GD consists of a space-time interference

rejection operator pi , followed by temporal match-
ed filtering and then spatial matched filtering (beam-
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forming). There is no approximation in this factored
implementation of the space-time GD for M-ary wi-
reless sensor networks over the wavefront fading
channel.

5 Performance of the GD
The performance of the GD has been analyzed on the
noncoherent additive white Gaussian noise channel
in [15]. In this section, we will extend this analysis to
the Rayleigh fading channel. We will employ the un-
ion bound on the probability of error

1 M M

Per::;ML LP(m,£) ,
m=1 f=l,f"'m

where P(m, £) is the probability that the £ -th deci-
sion statistic is greater than the m-th statistic when si-
gnal m is transmitted. We derive asymptotic (in the
SNR) expressions for these bounds, so we will only
consider zero-forcing GD detector. We will need ex-
pressions for the two-signal error probability for the
GD.

The pairwise probability of error is
PGD(m,£)

{12hmPty' - y'Pty + D~PtDl 12= Prob

/lPthml12

12h P 1- " *p 1- .p .L
1

2

< f RY -y RY+DI RDI }
Ilpthfl12

(25)

(26)
if signal hm was transmitted. Letting

t

Pm = Pploh ;
R m

Pf =PPih, ;

ilPm,t =Pm -Pi ,

(27)

we have

PGD(m,£)=Prob{y*LlPm,fy<O} . (28)
Using the results of [16], we find the characteristic
function of the quadratic form

z = y' ilP m,fY (29)
to be

1e (r) -
Z _

II
( 2.L * 1- 4 )

II

'
2I+r)1 PRhmhmPR +40- I ilPm,f

(30)

where 11...11is a determinant,

)12 =M[! a(k) 12] (31)

is the variance of the wavefront fade for sensor node
k.

To determine the probability of error, we need to
find the two nonzero eigenvalues, AGD'of the rank-
two matrix

()12pihmh~pi +40'4I)LlPm,f . (32)
These two eigenvalues are found via the quadratic
equation to be

A,~f = 0.5Em)12 %m,f

f O.5~E;')14%;"f + 16%m,f0-4(Em,u2+ 40'4) ,
(33)

where

I

* 1-

1

2

hmPRht

Ilpihm 112IIPihf 112

=sin2[Pihm,pihfJ (34)

is the sine squared of the angle between pihm and

pihf;

Em =h:pihm = Ilhm112.sin2[hm,R] (35)
is the sine squared of the principal angle between the
vector hm and the subspace < R> weighted by the
signal energy. The corresponding error probability is
then

%m,f= 1

1
PGD(m,£) =- GD '~1--

AgD

A~D as the positive root

(36)

where we have identified

appearing in (33).
By expanding the square root term in a Taylor se-

ries about 40-4, we find that asymptotically (in the
SNR) the eigenvalues are given by

{

A,GD==-40-4 ,

A~D ==Em)12 %m,f .

The corresponding asymptotic expression for the pa-
irwise probability of error is

1
PGD(m, £) ==

1 + SNRGD

where SNRGD is the following SNR:

SNR = )1211hm112. sin 2[h R]
GD 40-4 m'

xsin2[Pthm,Pthf] . (39)
We notice that the probability of error is a function
of this effective SNR, which relates the geometry of

(37)

(38)
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the signal set directly to the asymptotic performance
of the detector through the sine-squared terms in

sin2[Pthm, Pthf] and sin2[hm, R].

6 Simulation Results
Now let us consider two examplesof multiuserwire-
less sensor network systems on the wavefront fading
channel. In both examples, we have K = 2 sensor
nodes, each employing M = 2 signals with a proce-
ssing gain of N =3. In each case, a uniform linear
array was employed with half wavelength sensor
spacing and L =3 antenna sensors. For each exam-
ple, the fading processes for each sensor node were
assumed to have the same variance and the sensor
nodes employed equal energy signal constellation.

10°

10 " ..JO "" 2D

SNR(dB)

Figure I. Symbol error rate versus SNR for the GD
and MMSE detector with two sensor no-
des.

In the first example, we randomly chose the sig-
nals for each sensor node. We fixed the DOAs of the

sensor node relative to the receive array to be 0" and

5" for sensor nodes one and two, respectively. In Fi-
gure I, we plot the probability of symbol error for se-
nsor node one as a function of the SNR for the GD
and the minimum mean-square error (MMSE) detec-
tor for comparison. The GD outperforms the MMSE
detector at low SNRs. At high SNRs, the perform-
ance of the MMSE detector tends to approach the pe-
rformance of the GD. Notice that for this example,
the error bounds derived in (38) agree quite well with
the experimental data.

The next example we consider is the case of iden-
tical waveform signaling, meaning that the two sen-
sor nodes employ exactly the same signals, i.e.,
G(l) = G(2). For this case, all of the interference re-

jection comes from beamforming. This is sometimes
called angle-division multiple access (ADMA). Noti-
ce that bandwidth can be easily managed in this
scheme as each sensor node employs exactly the sa-
me frequency band; sensor nodes can be added with-
out increasing the bandwidth so long as there are en-
ough sensors in the array to resolve the sensor nodes'
DOAs. Since the signal separation between the two
sensor nodes is now only a function of their arrival

angles, we fixed sensor node one's DOA to 50" and

varied the interfering sensor node's DOA from - 90"
to 90". The SNR was fixed at 20 dB. The results of

this experiment are shown in Figure 2, and compared
with MMSE detector. We are able to see clearly that
the GD outperforms the MMSE detector. We notice
that when the interfering sensor node is close to the
sensor node user, the performance degradation is se-
vere.
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Figure 2. Symbol error rate versus DOA of the inter-
fering sensor node for the GD and MMSE
detectors with identical waveform signaling

7 Estimating the DOA
When the DOA of sensor node k is unknown, we
must estimate it in order to complete our model for
detection. In this section, we propose a modification
of the MUSIC algorithm [6] to perform this estimati-
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on. In our model for hm(k) in (20) we see that the

DOA-resolved signal vectors {hm(k)}, all lie in the

signal subspace. Let

Kyy =M[yy*]

have the eigendecomposition

[ ] I Al + 40"41
Kyy = UV .

(40)

0

0

40"41

u*

Y*

(41)
where V is an orthonormal basis for the orthogonal
subspace. Then for each signal vector, hm (k), we
have

h: (k)VV*hm (k) = s*(Ok) . [I L <8>gm(k)]* VV*

x[IL 0gm(k)]'S(Ok)=0 .
(42)

This suggests that we first estimate Kyy and V,

and then estimate Ok from the modified MUSIC fun-
ctional

M

Ok =arg mjn{s* (0). [L:[IL <8>gm (k)]* V
m=l

XV*[IL <8>gm(k)]]. s(O)} ,

where {gm(k)}M are the M-ary signals assigned toI
sensor node k.

(43)
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Figure 3. MSE for DOA estimation with the modifi-
ed MUSIC rule for the GD and MMSE de-
tector.

In Figure 3, we plot the mean squared error (MSE)
of our modified MUSIC estimation algorithm for a
K =3 sensor node channel with L =2 receive ante-

nnas. The interfering sensor nodes have energy le-
vels 7 dB above the desired sensor node and all sen-

sor nodes employed an M =3 signalset with dimen-
sion N =12. The signal set for each sensor node was

chosen randomly. In addition, we can compare the
GD and MMSE detectors and see the GD possesses
the lower MSE relative to the MMSE detector.

A key observation is that this technique is blind
with respect to the interfering sensor nodes. This me-
ans that it can be used to estimate the DOA of each
sensor node independently. It can also be incorpora-
ted into blind detectors of the type discussed in [4,5].

8 Conclusions
For wavefront fading, we may associate a DOA, Ok'
to each sensor node and exploit this structure to form
a one-dimensional matched subspace GD, which per-
forms spatial beamforming and temporal matched fi-
ltering separately. Comparative analysis between the
proposed GD and MMSE detector shows a superiori-
ty ofthe first detector. With these results, we can an-
alyze the important special case of waveftont fading
channel. The extension of these results will include
multiple transmit antennas.
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