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Abstract: The most commonly used spectrum sensing techniques in cognitive radio (CR) 

networks, such as the energy detector (ED), matched filter (MF), and others, suffer from the 

noise uncertainty and signal-to-noise ratio (SNR) wall phenomenon. These detectors cannot 

achieve the required signal detection performance regardless of the sensing time. In this 

paper, we explore a signal processing scheme, namely, the generalized detector (GD) 

constructed based on the generalized approach to signal processing (GASP) in noise, in 

spectrum sensing of CR network based on antenna array with the purpose to alleviate the 

SNR wall problem and improve the signal detection robustness under the low SNR. The 

simulation results confirm our theoretical issues and effectiveness of GD implementation in 

CR networks based on antenna array. 

Keywords: cognitive radio (CR); spectrum sensing; generalized detector (GD); energy 

detector (ED); noise uncertainty; sample complexity; antenna array; SNR wall 
 

1. Introduction 

The main aim of the cognitive radio (CR) network is to improve the spectrum utilization efficiency, 

by introducing an opportunistic use of unemployed frequency band by the primary user (PU)  

(see Figure 1). The spectrum sensing is needed to define the frequency holes that could be allocated for 
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the secondary user (SU). The spectrum sensors search continuously an availability of frequency holes 

and assign them to SU without causing harmful interference to the PU. Fundamental limitations in 

practice are involved in spectrum sensing process [1–3]. The sensitivity to noise power uncertainty, for 

example, variations in the noise variance as a function of real time, is one of the most common and 

serious problems among the well-known spectrum sensors such as the energy detector (ED), matched 

filter (MF), and even the cyclostationary detector under some conditions at the low signal-to-noise ratio 

(SNR) [4]. The impact of noise power uncertainty is quantified by SNR wall location, i.e., if the SNR 

value is less than the SNR wall, the PU signal detector will fail to achieve the desired performance and 

maintain a robustness against power noise uncertainty independently of how long the sensing time  

is [3–5]. Both theoretical and experimental analysis confirmed the SNR wall phenomenon existence 

under the noise power uncertainty conditions. This phenomenon negatively effects the receiver 

operation characteristic (ROC). Other uncertainties also can be considered as SNR wall generators, for 

example, the noise power estimation error, assumptions made under the white and stationary noise, 

fading process, shadowing, non-ideal filters, non-precise analog-to-digital (A/D) converters, quantization 

noise, aliasing effect caused by imperfect front-end filters, and interference between the PU and SU. An 

alternative presentation for the SNR wall is given by the number of samples N as a function of SNR, the 
probability of false alarm FAP  and probability of miss missP , i.e., ( , , )FA missN f SNR P P= . The PU signal 

detector should minimize the number of samples N required to achieve the desired detection 
performance. The lowest SNR satisfying the probability of false alarm FAP  and the probability of miss 

missP  constraints is called the detector sensitivity [3]. 

 

Figure 1. CR systems and SU with M antenna array elements. 

In general, the ideal ED does not have the SNR wall, but owing to the noise power uncertainty the ED 

suffers from the SNR wall phenomenon making the ED non-robust under the low SNR [6,7]. In many 

published papers, the ED spectrum sensing performance is investigated under the noise uncertainty 

conditions. Different solutions are presented in the form of the dynamic detection threshold [8],  

log-normal approximation of the noise uncertainty [9], falling the SNR wall using the cross-correlation [10], 

improving the noise power estimation using the maximum likelihood (ML) estimator [6], SNR  
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estimation based on the pseudo bit error rate (BER) for the modified ED [11], and algebraic spike  

detection method introduced in [12,13]. In fact, the best non-coherent detector is non-robust as the ED 

under the noise power uncertainty. In the coherent detector case, the SNR wall is pushed back only to a 
limited value and for a large channel coherence time cK → ∞ . In the MF case, the SNR wall location is 

proportional to 1/ cK  [3], and in the case of feature detector, the SNR wall value is less in  

comparison with the ED one and scales only as 1/ cK  with the relevant channel coherence time [3]. 

An interesting new four-level hypothesis blind detector for spectrum sensing in CR systems is presented 

in [14]. The proposed detector in [14] reduces the negative effects on the CR system performance, which 

are forming under the in-phase and quadrature-phase (I/Q) imbalance, based on the orthogonal  

frequency division multiplexing (OFDM) multiple access scheme, and presents a promising solution for 

any noise power uncertainties or SNR wall problem that could be caused by this I/Q imbalance.  

Cooperative spectrum sensing, in the course of which the multiple sensors are involved in  

cooperative spectrum sensing, demonstrates an effective approach to improve the spectrum sensing 

performance under several problems such as the noise power uncertainty, multipath fading, shadowing, 

and receiver uncertainties issues. The cooperative spectrum sensing can also solve the critical energy 

efficiency issue as shown in [15] where the energy efficient cooperative spectrum sensing is proposed 

and the optimal scheduling of active time for each spectrum sensor helps to extend the network lifetime. 

Selective grouping based on the cooperative sensing is discussed in [16] where during the sensing time 

each sensors group senses different radio channels while sensors in the same group perform the joint 

detection by the targeted channel. This process assures obtaining the more robust and efficient sensing 

performance comparing with the individual spectrum sensor case under the noise power uncertainty.  

To mitigate the negative effects of noise power uncertainty at the low SNR, an implementation of the 

generalized detector (GD), which is constructed based on the generalized approach to signal processing 

(GASP) in noise, for the spectrum sensing in CR networks based on antenna array is proposed. The GD 

represents a combination of the correlation detector, which is optimal in the Neyman-Pearson (NP) 

criterion sense when there is a priori information about the PU signal parameters, and ED, which is 

optimal in the NP criterion sense if there is no any a priori information about the PU signal parameters 

that are random [17–19]. The GD likelihood ratio test, based on which we can make a decision about the 

PU signal presence or absence in the process incoming at the SU input, demonstrates a definition of the 

jointly sufficient statistics of the mean and variance of the likelihood ratio and does not require any 

information about the PU signal and its parameters [17], ([18], Chapter 3). As was discussed in detail  

in ([18], Chapter 7, pp. 685–692), the main function of GD energy detector (GD ED) is to detect the PU 

signal and the main function of the GD correlation detector is to define the detected PU signal 

parameters and make a decision: the detected signal is the expected PU signal with the required 

parameters or not. 

Note that the conventional correlation detector makes a decision about the PU signal presence or 

absence in the incoming process based on definition of the mean only of the process incoming at the SU 

input. The conventional ED defines the decision statistics with respect to PU signal presence or absence 

at the SU input based on determination of the variance only of the process incoming at the SU input. 

Definition of the jointly sufficient statistics of the mean and variance based of the incoming process at 

the SU input allows us to make more accurate decision in favor of the PU signal presence or absence and 



Sensors 2015, 15 16108 
 

 

obtain more information about the PU signal parameters under GD employment in CR networks in 

comparison with the conventional MF, ED, correlation receiver and so on. 

A great difference between the GD ED and conventional ED is a presence of the additional linear 

system (the additional bandpass filter at the GD input) considered as the secondary data or reference 

noise source. The PU signal bandwidth is mismatched with the additional linear system bandwidth. The 

PU signal bandwidth is matched only with another linear system bandwidth at the GD front-end. Thus, 

the GD has two input linear systems, namely, the preliminary filter (PF) and the additional filter (AF). 

The last is considered as the reference noise source ([18], Chapter 3), [19]. The GD PF central frequency 

is detuned relatively to the GD AF central frequency to ensure, firstly, the PU signal passing only 

through GD PF and, secondly, the independence and uncorrelatedness between the stochastic processes 

at the GD PF and AF outputs. Thus, it is possible to obtain the PU signal plus noise at the GD PF output 

in the case of “a yes” PU signal at the GD input and only the noise in the opposite case. Consequently, 

only the noise is obtained at the GD AF output for both cases of “a yes” and “a no” PU signal at the GD 
input, in other words, under the hypotheses 1H  and 0H . The case when there is the PU signal generated 

by another source with the frequency content within the limits of the GD AF bandwidth, and considered 

as the additional interference, is discussed in [20]. The GD employment in wireless communications [21,22], 

radar sensor systems [20,23], and CR networks for spectrum sensing [24] allows us to improve the  

signal detection performance of these systems in comparison with implementation of widely used 

conventional detectors.  

This work differs from the previously published paper [24] by introducing a new advantage of GD 

employing in CR network systems based on antenna array, which is the SNR wall problem alleviation 

under the noise power uncertainty. Additionally, the GD optimal detection threshold is defined based on 

the minimal probability of error criterion under the noise power uncertainly at the low SNR condition.  

Intuitive approach to reduce the noise power uncertainty at run time by employing the GD in CR  

network is to define the noise power at the GD AF output, i.e., the another narrow band closed to the PU 

signal frequency band, with the purpose to calibrate the noise power in the PU signal frequency band. 

Even if we believe that the noise power forming at the GD PF and AF outputs is not the same, the noise 

calibration error can be much lower than the noise power uncertainty itself. The noise power calibration 

in real time improves the immunity against the SNR wall phenomenon [3]. In this paper, we investigate 

the GD noise power calibration effects on the SNR wall problem in coarse spectrum sensing for CR 

network systems based on antenna array and we define the GD sample complexity under the noise  

power uncertainty. The complementary receiver operating characteristic (ROC) and sample complexity 

of the ED, MF, and GD are compared under the same initial conditions for different uncertainty  

parameters. The real scenario of simulation demonstrates that the GD is able to alleviate the SNR wall 

problem and achieve the low probability of error in comparison with the conventional ED. 

The reminder of this paper is organized as follows. Section 2 presents the system model and the GD 

test statistics. Section 3 delivers the GD signal detection performance under the noise power  

uncertainty. The real scenario simulation results are discussed in Section 4. The concluding remarks are 

presented in Section 5.  
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2. System Model and GD Test Statistics 

2.1. System Model 

The spectrum sensor has an antenna array with the number of elements equal to M and each antenna 

array element receives N samples during the sensing time. The spectrum sensing problem can be  

modeled as the conventional binary hypothesis test: 

0

1

[ ] [ ],                       1,..., ;  0,..., 1,

[ ] [ ] [ ] [ ],     1,..., ;  0,..., 1,
i i

i i i

z k w k i M k N

z k h k s k w k i M k N

 = = = −
  = + = = −

H

H
 

(1)

where ][i kz  is the discrete-time received signal at the spectrum sensor input; [ ]iw k  is the discrete-time 

circularly symmetric complex Gaussian noise with zero mean and variance 2 ,wσ  i.e., 
2[ ] ~ (0, )i ww k σCN ; [ ]ih k  is the discrete-time channel coefficients obeying the circularly symmetric 

complex Gaussian distribution with zero mean and variance equal to 2
hσ , i.e., 2[ ] ~ (0, )i hh k σCN ; and 

[ ]s k  is the discrete-time PU signal, i.e., the signal to be detected. We consider the same initial 

conditions with respect to [ ]s k  as in [3]. The channel parameters are not varied during the sensing time 

and the channel coefficients [ ]ih k  are spatially correlated between each other. Throughout this paper, 

the PU signal [ ]s k , the channel coefficients [ ]ih k , and the noise [ ]iw k  are independent and 

uncorrelated between each other. The same channel model is widely used in [25–27]. In general, the ED 

does not require channel state information (CSI) for spectrum sensing [28] and the GD shares this 

property with ED because the ED is a constituent of the GD. It is well known that information about the 

CSI allows us to obtain better spectrum sensing performance in comparison with unknown  

CSI case. The knowledge about CSI can be more useful and effective in the cooperative spectrum 

sensing case. Under the low SNR and noise power uncertainty conditions, we can claim that we have 

imperfect CSI [29]. When the noise power estimation is applied, we have partial knowledge about the 

CSI. In this paper, we assume that the coarse spectrum sensing is performed without knowledge about 

the CSI.  

Owing to its simplicity, the exponential matrix model is widely used to describe the spatial  

correlation between the adjacent antenna array elements [30]. The components of the M M×  antenna 

array element correlation matrix C can be presented in the following form: 

{ } ,     ,      1,...,  i j
ij i j i, j M  −= ρ ≤ =C

 (2)

where ρ  is the coefficient of spatial correlation between the adjacent antenna array elements  

(0 1≤ ρ ≤ , the real values). Applying the results presented in [30], the coefficient of spatial correlation 

ρ  can be given as  

22exp{ 23 ( / ) }dρ = − Λ λ  (3)

where Λ  is the angular spread, an important propagation parameter defining a distribution of multipath 

power of radio waves coming in at the receiver input from a number of azimuthal directions with  

respect to the horizon; λ  is the wavelength; and d is the distance between two adjacent antenna array 

elements (the antenna array element spacing). The correlation matrix of antenna array elements C given 

by Equation (2) is the symmetric Toeplitz matrix [25]. 
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We define the 1NM ×  signal vector Z that collects all the observed signal samples during the  

sensing time using the following form: 

[ ] , ]1[],...,1[,  ...  ],0[],...,0[  
11

T
MM NzNzzz −−=Z  (4)

where T denotes a transpose. The data distribution in the complex matrix Z can be expressed as: 
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where sE  is the average energy of transmitted signal at the spectrum sensor input, and I is 

the MN MN×  identity matrix. We consider a situation when the primary signaling scheme is unknown  

(the PU has a total freedom of choosing the signaling strategy). Thus, the detector should be able to 

detect a presence of any possible PU signal satisfying the power and bandwidth constraints. 
The received signal vector Z has a complex Gaussian distribution with the covariance matrices 0Cov  

and 1Cov  under the hypotheses 0H  and 1,H respectively. If [ ] [ ]i iz k w k= , the received signals [ ]iz k  

are independent between each other. Under the hypothesis 1H , when [ ] [ ] [ ] [ ]i i iz k h k s k w k= + , the  

received signals are spatially correlated. The covariance matrices 0Cov  and 1Cov  can be determined 

in the following form: 
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where [ ]E ⋅  is the mathematical expectation; H denotes the Hermitian conjugate (conjugate transpose); I 

is the MN MN×  identity matrix; sE  is the PU signal energy at the SU input; and A  is the MN MN×  

matrix defined based on the correlation matrix C given by Equation (2) [30]: 
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(7)

where M0  is the M M×  zero matrix. 

2.2. GD Statistics 

The GD has been constructed based on the (GASP) in noise discussed in detail in [17–19]. The GD is 

considered as a linear combination of the correlation detector, which is optimal in the Neyman-Pearson 

criterion sense under detection of signals with a priori known parameters, and the ED, which is optimal 

in the Neyman-Pearson criterion sense under detection of signals with a priori unknown or random 

parameters. The main functioning principle of GD is a complete matching between the model signal 

generated by the local oscillator in GD and the information signal, in particular, the PU signal at the GD 

input by whole range of parameters. In this case, the noise component of the GD correlation detector 

caused by interaction between the model signal generated by the local oscillator in GD and the input 

noise and the random component of the GD ED caused by interaction between the incoming information 
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signal (the PU signal) and input noise are cancelled in the statistical sense. This GD feature allows us to 

obtain the better detection performance in comparison with other classical receivers or detectors. 

The specific feature of GASP is introduction of the additional noise source that does not carry any 

information about the incoming signal with the purpose to improve a qualitative signal detection  

performance. This additional noise can be considered as the reference noise without any information 

about the PU signal [17]. The jointly sufficient statistics of the mean and variance of the likelihood ratio 

is obtained in the case of GASP implementation, while the classical and modern signal processing  

theories can deliver only a sufficient statistics of the mean or variance of the likelihood ratio. Thus, the 

implementation of GASP allows us to obtain more information about the input process or received 

information signal (the PU signal). Owing to this fact, an implementation of receivers constructed based 

on the GASP basis allows us to improve the spectrum sensing performance of CR wireless networks in 

comparison with employment of other conventional receivers at the sensing node. 

 

Figure 2. GD flowchart. 

The GD flowchart is presented in Figure 2. As we can see from Figure 2, the GD consists  

of three channels: 

• The GD correlation channel—the PF, multipliers 1 and 2, model signal generator MSG; 

• The GD ED channel—the PF, AF, multipliers 3 and 4, summator 1; 

• The GD compensation channel—the summators 2 and 3 and accumulator Σ. 

As follows from Figure 2, under the hypothesis 1H  (a “yes” PU signal), the GD correlation channel 

generates the signal component mod[ ] [ ]i is k s k  caused by interaction between the model signal, the 

reference signal at the GD model signal generator (MSG) output, and the incoming information signal 
(the PU signal) and the noise component mod2 [ ] [ ]i is k kξ  caused by interaction between the model signal 

mod[ ]is k  and the noise [ ]i kξ  (the PF output). Under the hypothesis 1H , the GD ED generates the 

information signal energy 2[ ]is k  and the random component 2 [ ] [ ]i is k kξ  caused by interaction 
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between the information signal [ ]is k  and the noise [ ]i kξ . The main purpose of the GD compensation 

channel is to cancel in the statistical sense the GD correlation channel noise component mod2 [ ] [ ]i is k kξ  

and the GD ED random component 2 [ ] [ ]i is k kξ  between each other based on the same nature of the 

noise [ ]i kξ . 

To describe the GD flowchart we consider the discrete-time processes without loss of any  

generality. Evidently, the cancelation in the statistical sense between the GD correlation channel noise 
component mod2 [ ] [ ]i is k kξ  and the GD ED random component 2 [ ] [ ]i is k kξ  is possible only based on the 

same nature of the noise [ ]i kξ  satisfying the condition of equality between the signal model mod[ ]is k  

and incoming PU signal [ ]is k  over the whole range of parameters. The condition 

mod[ ] [ ]i iss k k=  (8)

is the main GD functioning condition. Naturally, in practice, the signal parameters are random.  
The complete matching between the model signal mod[ ]is k  and the incoming signal [ ]is k  (the PU 

signal), especially by amplitude, is a very hard problem in practice and only in the ideal case the 

complete matching is possible. How the GR sensing performance can be deteriorated under mismatching 
between the model signal mod[ ]is k  and the incoming (PU) signal [ ]is k  is discussed in this paper.  

Under the hypothesis 0H , i.e., a “no” information signal (the PU signal), satisfying the GD main  

functioning condition given by (8), we obtain only the background noise 2 2[ ] [ ]i ik kη − ξ  at the GD 

output. The GD PF bandwidth is matched with the bandwidth of the information signal (the PU signal) 
[ ]is k . The threshold apparatus (THRA) device defines the GD threshold. 

The GD PF and AF can be considered as the linear systems, for example, as the bandpass filters, with 
the impulse responses [ ]PFh m  and [ ]AFh m , respectively. For simplicity of analysis, we assume that 

these filters have the same amplitude-frequency characteristics or impulse responses by shape. 

Moreover, the GD AF central frequency is detuned with respect to the GD PF central frequency on such 

a value that the information signal (the PU signal) cannot pass through the GD AF. Thus, the PU signal 

and noise can appear at the GD PF output and the only noise is appeared at the GD AF output  

(see Figure 3). If a value of detuning between the GD AF and PF central frequencies is more than 4 or 
5 sfΔ , where sfΔ  is the PU signal bandwidth, the processes at the GD AF and PF outputs can be  

considered as the uncorrelated and independent processes and, in practice, under this condition, the 

coefficient of correlation between GD PF and AF output processes is not more than 0.05 that was 

confirmed experimentally [31,32]. 

In the present paper, we consider the spectrum sensing problem of a single radio channel where the 

GD AF bandwidth is always idle and cannot be used by the SU because it is out of the useful spectrum of 

the PU network. There is a need to note that in a general case, the GD AF portion of the spectrum may be 

occupied by the PU signals from other networks and can be not absolutely unoccupied. In this case, the 

PU signals from other networks can be considered as interferences or interfering signals. Investigation 

and study of GD under this case is discussed in [20]. 

The processes at the GD AF and PF outputs present the input stochastic samples from two  
independent frequency-time regions. If the noise [ ]w k  at the GD PF and AF inputs is Gaussian, the 

noise at the GD PF and AF outputs is Gaussian, too, because the GD PF and AF are the linear systems, 

and we believe that these linear systems do not change the statistical parameters of the input process. We 
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use this assumption for simplicity of theoretical analysis. Thus, the GD AF can be considered as a 

reference noise source with a priori knowledge a “no” signal (the reference noise sample). Detailed 

discussion of the GD AF and PF can be found in [18,19]. The noise at the GD PF and AF outputs can be 

presented in the following form: 

1

1

[ ] [ ] [ ] [ ]  ,

[ ] [ ] [ ] [ ]  . 

PF

M

i PF i
i m

M

AF i AF i
i m

w k k h m w k m

w k k h m w k m

∞

= =−∞

∞

= =−∞

 = ξ = −

 = η = −


 

 
 

(9)

Under the hypothesis 1,H  the signal at the GD PF output can be defined as [ ] [ ] [ ]i i ix k s k k= + ξ  (see 

Figure 2), where [ ]i kξ  is the observed noise at the GD PF output and 

[ ] [ ] [ ]i is k h k s k= × (10)

 

Figure 3. Signals at the GD PF and AF outputs: (a) GD AF response and noise; (b) GD PF 

response and noise; (c) GD PF response and PU signal. 

Under the hypothesis 0 ,H  and for all i and k, the process [ ] [ ]i ix k k= ξ  at the GD PF output is 

subjected to the complex Gaussian distribution and can be considered as the independent and identically 
distributed (i.i.d.) process. The process at the GD AF output is the reference noise [ ]i kη  with the same 

statistical parameters as the noise [ ]i kξ  in the ideal case. We make this assumption for simplicity. In 

practice, the statistical parameters of the noise [ ]i kξ  and [ ]i kη  are different, as a rule. We consider 

this case below. The decision statistics at the GD output presented in [17,18] is extended to the case of 

antenna array employment when an adoption of multiple antennas and antenna arrays is effective to 

mitigate the negative attenuation and fading effects [20,24]. The GD decision statistics can be presented 

in the following form: 
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where 

1 1[ [0], , [0],   , [ 1], , [ 1]]T
M Mx x x N x N= − −X     (12)

is the stochastic process vector at the GD PF output and GDTHR  is the GD detection threshold. We can 

rewrite Equation (11) in the vector form: 

1

0 

mod 2 2( ) 2GD GDT THR<= − + >X S X X η H

H  
(13)

where 

[ (0),..., ( 1)]N= −X x x  (14)

is the 1M ×  vector of the random process at the GD PF output with elements defined as 

1[ ] [ [ ], , [ ]]M

Tk x k x k=x   (15)

mod mod mod[ (0), , ( 1)]N= −S s s  (16)

is the 1M ×  vector of the process at the MSG output with the elements defined as 
mod mod mod

1[ ] [ [ ], , [ ]]T
Mk s k s k=s   (17)

[ (0), , ( 1)]N= −η η η  (18)

is the 1M ×  vector of the random process at the AF output with the elements defined as 

1[ ] [ [ ], , [ ]]T
Mk k k= η ηη   (19)

and GDTHR  is the GD detection threshold. According to GASP and GD structure shown in Figure 2 and 

the main GD functioning condition (8), the GD test statistics takes the following form under the 
hypotheses 1H  and 0H , respectively: 
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The term
1 2

0 1
[ ]

N M

ik i
s k

−

= =   is the average energy of received signal and the term  
1 2

0 1
[ ]

N M

ik i
k

−

= =
η −  1 2

0 1
[ ]

N M

ik i
k

−

= =
ξ   presents the background noise at the GD output that is a difference 

between the noise power at the GD PF and AF outputs. It is important to mention that the GD main 
functioning condition is the equality between parameters of the model signal mod[ ]is k  and the PU signal 

[ ]is k  (see Equation (8)) over all range of parameters and, in particular, by amplitude. How we can 

satisfy this condition in practice is discussed in detail in [17] and ([18], Chapter 6, pp. 611–621 and 
Chapter 7, pp. 631–695) when there is no a priori information about the signal [ ]is k . Additionally, a 

practical implementation of the GD decision statistics requires an estimation of the noise variance 2

wσ  

using the reference noise [ ]i kη  at the GD AF output. 

The mean 
0

GDmH  and variance 
0

GDVarH  of the test decision statistics ( )GDT X  under the hypothesis 0H  

are given in the following form ([19], Chapter 3): 
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The above-mentioned discussion is correct for the case when the noise variances at the GD AF and 
GD PF outputs are the same, i.e., 2 2 2

ξ ησ = σ = σ . For the case that is very close to practice if the GD AF 

and PF are the bandpass filters with deviation in parameters, i.e., 2 2
ξ ησ ≠ σ , we can assume 2 2

ξσ = σ  and 
2
ησ = 2 2

ξβσ = βσ , where β  is the noise coefficient (or factor) of proportionality. For this case, (21) takes 

the following form: 
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We use representation (22) in the following discussion, for example, in Section 3. 

2.3. Moment Generation Function of the GD Partial Test Statistics ( )GD kT X  

To define the mean 
1

GDmH  and variance 
1

GDVarH  of the test statistics ( )GDT X  under the hypothesis 

1H , the moment generation function (MGF) of the GD partial test statistics ( )GD kT X  given by 

2 2 2

1 1 1

( ) [ ] [ ] [ ]  GD

M M M

k i i i
i i i

T s k k k
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(23)

is required. The MGF of the GD partial test statistics ( )GD kT X  is presented as:  

∏∏∏∏
==== −

×
+−

=−
−

=
M

i ihs

M

i
z

M

i
z

M

i ihs
T lEll

ll
lE

l
iikGD

1
222

111
2)( σ1

1

)σ21)(σ21(

1
)()(

σ1

1
)(

21 αα
MMM X

 

∏
= −−

=
M

i ihs
M lEl 1

24 σ1

1

)σ41(

1

α
 (24)

Derivation of Equation (24) in detail is given in Appendix A.  
Based on Equation (24), the mean 

1

GDmH  and the variance 
1

GDVarH  of the test statistics ( )GDT X  under 

the hypothesis 1H  take the following form, respectively: 

1

2
1[ ( ) ]   ,GD

GD k s hm E T NME= = σXH H
 (25)

1

2 4 2 4
1

1

[ ( ) ] 4  GD

GD

M

k s h i
i

Var Var T N E M
=

 = = σ α + σ  
XH H

 
(26)

For the case 2 2
ξ ησ ≠ σ , Equations (25) and (26) take the following form 

1

2
1[ ( ) ]GD

GD k s hm E T NME= = σXH H (27)

1

2 4 2 4 2
1

1

[ ( ) ] 2 (1 ) GD

GD

M

k s h i
i

Var Var T N E M
=

 = = σ α + σ + β  
XH H

 
(28)
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3. GD Spectrum Sensing and Sample Complexity 

The spectrum sensor should minimize the number of samples N, i.e., the sample complexity,  
required to distinguish the hypotheses 0H  and 1H  with high accuracy under definite constraints applied 

to the standard and desired probability of false alarm FAP  and probability of miss missP . For example, 

according to the IEEE 802.22 standards, the constraints are 0.1FAP ≤  and 0.1missP ≤  [33].  

3.1. The Case [ ] [ ]m
i is k s k=  

For the considered case, Equations (24)–(28) are valid. We assume that the received PU signal and 

noise at the GD input are independent. Thus, as N → ∞  the central limit theorem is valid and can be 
applied. The probability density function (pdf) of the GD test statistics ( )GDT X  can be approximated by 

the normal Gaussian distribution. In this case, the probability of false alarm GD
FAP  and the probability of 

miss GD
missP  can be expressed in the following form [19]: 
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 (30)

where 

21
( ) exp( 0.5 )

2 x

Q x t dt
∞

= −
π   

(31)

is the Gaussian Q -function. 

In the noise power uncertainty case, the noise power or variance at the GD PF and AF outputs can be 

determined only within the limits of a definite range [3] (see Figure 4) 
2 1 2 2,   ,[ ]w w

−σ ∈ ρ σ ρσ  (32)

i.e., the actual noise power is bounded by the lower and upper bounds, where 2
wσ  is the nominal noise 

power or variance at the GD input 
0.110 ερ =  (33)

is the uncertainty parameter; ε  is the parameter used to define the amount of non-probabilistic  

uncertainty in the noise power.  

In the case of noise power uncertainty, Equations (29) and (30) can be written in the following form: 
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(35)

where 
2

2
s h

w

E
SNR

σ=
σ  

(36)

is the SNR at the GD input. Based on Equations (34) and (35), the threshold GDTHR  can be defined as 
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As 1SNR << , substituting Equation (37) in Equation (35), the GD sample complexity can be  

defined as 
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Here we assume that 2 1 2 2[ , ]w w
−

ξσ ∈ ρ σ ρσ  and 2 1 2 2[ , ]w w
−

ησ ∈ ρ σ ρσ . As follows from Equation (38), the 

sample complexity GDN  is inversely proportional to the squared SNR. 

We can notice that there is no additional term involving the SNR in the denominator of Equation (38) 

which leads to the noise power uncertainty calibration, i.e., the SNR wall alleviation. This is caused by 
the complete compensation in the ideal case between the noise component mod2 [ ] [ ]i is k kξ  of the GD  

correlation channel and the random component 2 [ ] [ ]i is k kξ  of the GD ED channel and also because the 

mean 
0

GDmH  of the test statistics ( )GDT X  is equal to zero under the hypothesis 0H  [17]. This result 

confirms an effectiveness of the GD test statistics under the use of reference noise forming at the GD AF 

output for SNR wall alleviation. 
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Figure 4. Power noise uncertainty model. 

The relation between the probability of miss GD
missP  and probability of false alarm GD

FAP  is given by 
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Following the above-mentioned procedure we can obtain the sample complexity for ED, which can 

be determined in the following form: 
1 1 1 2

1 2

[ ( ) (1 )]
 .

[ ( )]

ED ED
FA miss

ED

Q P Q P
N

M SNR

− − −

−

ρ − ρ −=
− ρ − ρ  

(40)

As follows from (40), we can define the ED SNR wall in the following form [3] 

2 1  ED
  wallSNR     

ρ −=
ρ  

(41)

The relation between the probability of miss ED
missP  and probability of false alarm ED

FAP  can be defined as 

. )]ρ(ρ[ρ)(ρ1 }{ 112 −− −−−−= SNRNMPQQP ED
FA

ED
miss  (42)

In the MF case, the effective SNR is provided by the coherent processing gain. Thus, the MF  

sample complexity is given by [3] 
1 1 2

1 2

2 [ ( ) (1 )]
 ,

[  ( )]

MF MF
c FA miss

MF
c

K Q P Q P
N

M K SNR

− −

−

− −=
θ − ρ − ρ  

(43)

where cK  is the coherence time of the radio channel, i.e., the time interval, within the limits of which 

the channel impulse response is not varied; θ  is a fraction of the total power that is allocated to the 

known pilot tone. This concept covers many practical wireless communication systems employing the 

pilot tones and training known sequences for synchronization and timing acquisition. The MF SNR wall 

can be presented in the following form [3]: 

21 1
 

 
MF
wall

c

SNR
K

ρ −=
θ ρ  

(44)
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The ED has the better sample complexity performance at the high SNR in comparison with the MF 

because the ED uses the total average PU signal power for detection while the MF uses only a fraction of 

the total PU signal power. In the case of MF possessing the pilot tone detection scheme, the SNR wall 

phenomenon is a consequence of time-selectivity of the channel fading process and the signal power is 
increased with the factor cK  owing to increasing the coherent processing gain. This is the reason why 

we see that the MF is sensitive to the channel coherence time cK . Thus, the effective SNR of the 

coherently combined signal according to [1,2] is given by  

 MF
eff cSNR K SNR= θ

 (45)

3.2. The Case [ ] [ ]m
i is k s k≠  

In practice, the problem to satisfy an equality between the model signal mod[ ]is k  and incoming PU 

signal [ ]is k  amplitudes is a very difficult problem. For simplicity, we consider a case when a relation 

between the amplitudes of the model signal mod[ ]is k  and incoming PU signal [ ]is k  can be presented in 

the following form: 
mod[ ] [ ]i is k s k= μ  (46)

where μ  is the amplitude coefficient of proportionality. Under the condition given by Equation (46), 

the MGF of the GD partial decision statistics 
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Based on Equation (48), the mean 
1

GDmH  and the variance 
1

GDVarH  of the test statistics ( )GDT X  under 

the hypothesis 1H  are defined using the following form: 

[ ]
[ ]

[ ]
[ ] ;        

  ;  )(2)()1(2])12[(            

)( 

;    )12()(E 

;  
  ;  4)1(4])12[()( 

;    )12()(E 

22

44222222

1

2
1

222

422222
1

2
1

}{

}{

1

1

1

1

ηξ

ηξηξ

ηξ

σσ

σσσσσμσμ

σμ

σσσ
σσσμσμ

σμ

≠










+++−+−=

=

−==

==






+−+−==

−==

hshs

GD
GD

hsGD
GD

hshsGD
GD

hsGD
GD

EENM

TVarVar

ENMTm

EENMTVarVar

ENMTm

H

H

H

H

H

H

H

H

X

X

X

X

 

(49)

In the case of noise power uncertainty and under the condition given by Equation (46), Equation (49) 
allows us to define the probability of false alarm GD

FAP  and the probability of miss GD
missP  for GD using 

the following form: 
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Under delivering (51) we ignore the term 2 2(2 1) SNRμ −  since CR networks operate at very low SNR 

values, i.e., 1SNR << . Defining the threshold GDTHR  in terms of the probability of false alarm 
GD

FAP based on (50) and substituting it in (51), we obtain 
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At the low SNR values, we can apply the following approximation 2 2( 1) 1 1SNRμ − + ≈  and 

determine the GD sample complexity using the following form: 
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At 1μ =  we obtain the sample complexity GDN  given by Equation (38). 

3.3. The GD Optimal Threshold 

As a matter of fact, the ED and GD ignore the PU signal characteristics and rely only on the  

PU signal energy. Thus, the ED and GD optimal threshold should be proportional to the nominal noise 

power at the SU input. In practice, the noise power is unknown and should be estimated by the GD noise 

power estimator (NPE in Figure 2). As a result, both the ED and GD detection thresholds can be defined 

based on the total error rate minimization [34–36]. In the case of the additive white Gaussian noise 

(AWGN) channel, the GD optimal threshold can be defined using the minimal probability of error in the 

following form: 

arg min ( )  ,
GD

op GD
GD er GD

THR
THR P THR=

 (54)

where GD
erP  is the probability of error given by 
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0 1( ) ( )   ,GD GD GD
er FA missP P P P P= +H H  (55)

where 0( )P H  and 1 0( ) 1 ( )P P= −H H  are the a priori probabilities of the PU signal absence or presence, 

respectively. For simplicity of analysis, we assume that these a priori probabilities are known and equal 
to 0 1( ) ( ) 0.5P P= =H H . The optimal GD threshold can be expressed as (see Appendix B)  
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As we can see from (56), in the ideal case, i.e., when there is no noise power uncertainty 1ρ =  and 

1β =  or 2 2 2
ξ ησ = σ = σ , the optimal detection threshold is determined as 

22op
GD wTHR NM= σ  (57)

In practice, in the GD case, there is no need to define or know a priori the value of ρ  since the noise 

power is estimated in the real time using the NPE (see Figure 2). We consider the optimal threshold 

under the noise power uncertainty for the theoretical analysis presented in this paper. 

Since the estimated noise power is differed from the real noise power, the noise power uncertainty is 

an unavoidable problem in practice [2,3,37]. As discussed in [6,38], in the ED case, the SNR wall 

phenomenon is caused by insufficient refinement of the noise power estimation while the observation 

time is increased and the noise power estimation approach can avoid the SNR wall problem if the noise 

power estimate is consistent within the limits of the observation interval. Finally, we cannot rely on the 

noise power estimation to solve the SNR wall problem. The results presented in [6] are applicable for ED 

under the use of the noise power estimation and can be applied to GD implementation in CR networks. 

4. Simulation and Discussion 

The sample complexity and existence of the SNR wall for the ED and MF and non-existence of the 

SNR wall for the GD are verified by the real scenario simulation that is performed using MATLAB in 

accordance with the parameters presented in the IEEE 802.22 standards, i.e., the standard for wireless 

regional area network WRAN using white spaces in the TV broadcast bands such as the digital video 

broadcasting-terrestrial DVB-T. The simulation parameters are presented in Table 1.  

Table 1. Main simulation parameters. 

Parameter Value 

Number of antenna array elements 2;  6M =  

Signal-to-noise ratio 40 0SNR = − ÷  [dB] 

Probability of false alarm 1.0=FAP  

Probability of miss 1.0=missP  

Non-probabilistic uncertainty parameter 1; 0.1 ; 0.001ε =  [dB] 

Channel parameter 
2 1hσ =  

Channel coherence time 100;  1000cK =  

Fraction of the total power 0.1θ =  
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As we can see from Figure 5, in the ideal case, i.e., the complete compensation of the noise  
component of the GD correlation channel mod2 [ ] [ ]i is k kζ  and the random component of the GD ED 

channel 2 [ ] [ ]i is k kξ , the GD presents the best sample complexity performance in comparison with the 

ED and MF under conditions of the noise power uncertainty. The GD overcomes a negative impact of 

the noise power uncertainty. Thus, the GD can detect the PU signal at any arbitrary low SNR increasing 

the number N of samples. In other words, there is no SNR wall. In the case of ED, when there is no noise 
power uncertainty, i.e., 1ρ = , there is no SNR wall and the PU signal can be detected at any low SNR by 

increasing the sensing time or the number N of samples. If there is the noise power uncertainty, there is 

the SNR wall for the ED and its location depends on the value of ε  and, consequently, the uncertainty 
parameter .ρ  For example, at 1ε =  dB, the 3ED

wallSNR = −  dB, and at 0.1ε =  dB, the 

13ED
wallSNR = − dB. Thus, the sample complexity tends to approach infinity as the SNR decreases tending 

to approach the SNR wall: 

lim ( , , , )   .
ED ED

wall

ED
FA miss

SNR SNR
f SNR P P

→
ρ → ∞

 
(58)

Small values of ε , the least uncertainty case, are preferred because, in this case, there is a decreasing 

in SNR wall. 

 

Figure 5. The sample complexity curves of ED, MF, and GD under the noise  

power uncertainty. 

The MF has the better sample complexity performance at the low SNR in comparison with the ED. 
For example, at 0.1ε =  dB, 13 dBED

wallSNR = −  and 23 dBMF
wallSNR = − . The MF sample complexity 

depends on the channel coherence time cK . As we can see, at the same value of ε , MF
wallSNR  is 

decreased if the channel coherence time cK  is increased, i.e., 23 dBMF
wallSNR = −  at 100cK =  and 

33 dBMF
wallSNR = −  at 1000cK = . 



Sensors 2015, 15 16123 
 

 

The GD sample complexity under the non-ideal condition, the case in practice, mod[ ] [ ]i is k s k≠  and 
2 2
ξ ησ ≠ σ , is presented in Figure 6 at 1ε =  dB, 2M =  and several values of μ  and β . As we can see 

from Figure 6, the best GD sample complexity efficiency is obtained at 1μ =  or mod[ ] [ ]i is k s k=  and 

1β =  or 2
ξσ 2

η= σ . Additionally, we can see that there is no SNR wall in the GD case, but the GD sample 

complexity efficiency decreases at 1μ ≠  and 1β ≠ . In this case, more samples are needed at the same 

SNR value to achieve the required probability of false alarm. 

 

Figure 6. The GD sample complexity at the condition mod[ ] [ ]i is k s k≠ . 

The complementary receiver operating characteristic (ROC) curves, which are widely used in  

practice, for example in [39–41], for the ED and GD are presented in Figure 7 with and without the noise 

power uncertainty at 6M =  and 20N = . In a general, for both detectors the noise power uncertainty 

leads to the complementary ROC curves shifting away from the (0,0) origin. As shown in Figure 7, the 

GD demonstrates the better sensing performance in comparison with the ED and the sensing 

performance degradation rate of GD is less under the noise power uncertainty conditions. In the GD 
case, under the low SNR or if the SNR is above the ED

wallSNR , the sensing performance degradation caused 

by the noise power uncertainty can be compensated by increasing in the number of samples N. However, 
if the SNR is below the ED

wallSNR , the ED complementary ROC curve is over the dotted straight line  

corresponding to the random coin-tossing detector case in Figure 7. This situation is observed at 0.1ε =  dB, 
15SNR = − dB if 13SNR = − dB (Figure 5) and 1ε = dB, 5SNR = − dB when 3 dBED

wallSNR = − (Figure 6). 

In Figure 8, a comparison between the ED and GD performance in terms of the probability of error 

erP  as a function of the sample number N, the analogous performance is discussed in [36], is shown at 

0.1ε = dB, 10SNR = − dB, and 13SNR = − dB. The GD demonstrates the better sensing performance in 
comparison with the ED one. For example, at 210N =  the probability of error erP is equal to 0.3126 in 

the GD case and 0.5346 in the ED case. At 13SNR = − dB that corresponds to the ED
wallSNR  when 

0.1ε =  dB, we can see that the probability of error erP  in the ED case fails to be robust and is distinctly 

differed owing to the SNR wall phenomenon. In this case, an increasing in the number of samples N is 
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not effective to improve the probability of error erP  performance for ED. At the same time, the GD has 

the same normal behavior meaning that the probability of error erP  performance for GD is improved 

with increasing in the number of samples N. 

 

Figure 7. The complementary ROC curves for ED and GD. 

 

Figure 8. Spectrum sensing performance for the ED and GD in terms of the probability of 
error erP  as a function of the sample number. 

Comparison between the probability of error erP  for the ED and GD as a function of the normalized 

optimal detection threshold, where NM  is the normalization factor, is presented in Figure 9. The 
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probability of error erP  is evaluated for both detectors in two cases: there is the noise power uncertainty 

and there is no noise power uncertainty at the 5SNR = − dB, 2M = , 100N = , 0.1 ε = and 1dB. As 
shown in Figure 9, the GD can achieve the lower probability of error erP  in comparison with the ED for 

both cases. For example, if there is no noise power uncertainty the minimal probability of error erP  is 

equal to 0.13 in the GD case and 0.25 in the ED case. If there is the noise power uncertainty with 0.1ε =  
dB, the lowest probability of error erP  for the GD is equal to 0.24 and 0.33 for the ED. In a general case, 

the noise power uncertainty affects negatively on the ED and GD probability of error erP . Thus, we can 

make the following conclusion: increasing in the noise power uncertainty leads to increasing in the 
probability of error erP . 

 

Figure 9. The probabilities of error GD
erP  and ED

erP  as a function of the normalized 

threshold, 2 2 2
ξ ησ = σ = σ . 

Figure 10 demonstrates the effect of inequality between the noise variances 2 2  ξ ησ ≠ σ at the GD PF 

and AF outputs on the probability of error erP  as a function of the normalized detection threshold given 

by Equation (56) at 5SNR = − dB, 2M = , 100N = , 0.1ε = dB. We can notice that the β  value effects 

GD performance. For example, at 0.9β =  the probability of error GD
erP  is approximately equal to 0.26 

and at 0.5β =  the probability of error GD
erP  is equal to 0.32.  

As follows form the theoretical analysis and simulation results, the GD implementation allows us to 
improve the spectrum sensing accuracy that is defined by the probability of false alarm FAP  and the 

probability of detection DP . Additionally, the GD allows us to alleviate the SNR wall problem by  

calibrating the noise power uncertainly increasing the number of samples. Thus, the GD employment 

allows us to improve the signal detection and signal processing performance. The main GD can be 

applicable in many practical systems, such as the adaptive and spectrum efficient communication 

systems, CR network systems, and carrier sense multiple access based on wireless networks. In terms of 

complexity, the GD implementation can be more complicated in comparison with some conventional 

detectors, for example, the ED. The complexity of GD implementation in practice is caused by the 



Sensors 2015, 15 16126 
 

 

following problems: (1) the inequality between the noise power or variances at the GD PF and AF 

outputs (discussed in this paper); (2) the problem of matching by parameters between the model signal 

and the incoming PU signal parameters, for example, by the amplitude or energy (discussed in this 

paper); (3) the interfering signals within the frequency content of the GD AF, i.e., the GD AF bandwidth 

(discussed in [20]). 

 

Figure 10. The probabilities of error GD
erP  and ED

erP  as a function of the normalized 

threshold, 2 2
ξ ησ ≠ σ .  

5. Conclusions 

The actual spectrum sensing performance of the well-known detectors employed in CR networks 

based on antenna array, such as the ED and MF deviates from the theoretical results owing to the noise 

power uncertainty and SNR wall phenomenon. This phenomenon has a negative impact on the  

spectrum sensing performance and on the receiver operation characteristic (ROC) when increasing in the 

sensing time has no any compensating effects. In this paper, we demonstrate that under implementation 
of the GD in CR networks based on antenna array there is no GD

wallSNR  in the case of noise power 

uncertainty that is confirmed by the real scenario simulation. The GD can calibrate the noise power 

uncertainty problem by the compensation channel (see Figure 2) using the reference noise forming at the 

GD AF output. The GD is able to detect the PU signal at any low SNR value with increasing in the 

number of samples that is still not the ideal solution under fast spectrum sensing. Thus, the GD 

implementation in CR networks based on antenna array allows us to reduce some negative effects caused 

by the noise power uncertainty and improve the PU signal detection performance and robustness. The 
probability of error erP  as a function of the normalized optimal detection threshold is evaluated for the 

ED and GD both under presence and absence of the noise power uncertainty. The GD demonstrates the 
better probability of error erP  performance in comparison with the ED in both cases. Finally, as is 
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demonstrated by the simulation results, with an increase in the noise power uncertainty, the probability 
of error erP  increases as well.  
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Symbols and Variables Summary 

Symbol or Variable Description Symbol or Variable Description 

ε  
Non-probabilistic  

uncertainty parameter 
0

GDmH  

Mean of the GD decision 

statistics under the 

hypothesis 0H  

ρ  Coefficient of spatial 

correlation 
0

GDVarH  

Variance of the GD decision 

statistics under the 

hypothesis 0H  

θ  Fraction of the total power 1

GDmH  

Mean of the GD decision 

statistics under the 

hypothesis 1H  

Λ  Angular spread 1

GDVarH  

Variance of the GD decision 

statistics under the 

hypothesis 1H  

λ  Wavelength GDTHR  GD detection threshold 

β  Noise factor 
op
GDTHR  

GD optimal detection 

threshold 

μ  Amplitude factor FAP  Probability of false alarm 

υ  
Chi-square distribution degree 

of freedom 
missP  Probability of miss 

iα  
Eigenvalue of the i-th spatial 

channel of the correlation 

matrix 

GD
FAP  

GD probability of false 

alarm 

2
hσ  Channel parameter 

GD
missP  GD probability of miss 
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2
wσ  Noise variance 

ED
FAP  ED probability of false alarm 

2
ξσ  Noise variance at GD PF 

output 

ED
missP  ED probability of miss 

2
ησ  Noise variance at GD AF 

output 

MF
FAP  

MF probability of false 

alarm 

sfΔ  PU signal bandwidth 
MF

missP  MF probability of miss 

M0  M M×  zero matrix erP  Probability of error 

d  
Antenna array element 

spacing 

GD
erP  GD probability of error 

C  
Antenna array element 

correlation matrix 
0( )P H  a priori probability of the 

PU signal absence 

0Cov  
Covariance matrix under the 

hypothesis 0H  1( )P H  a priori probability of the 

PU signal presence 

1Cov  
Covariance matrix under the 

hypothesis 1H  
 ED
 wallSNR  ED SNR wall 

sE  Average energy of transmitted 

signal 

 MF
 wallSNR  MF SNR wall 

0H  Hypothesis of signal absence 
MF
effSNR  MF effective SNR 

1H  Hypothesis of signal presence [ ]iw k  
Discrete-time circularly 

symmetric complex 

Gaussian noise 

[ ]ih k  Discrete-time channel 

coefficients 
X  

Stochastic process vector at 

the PF output 

[ ]PFh m  GD PF impulse response [ ]ix k  Discrete-time signal at PF 

output 

[ ]AFh m  GD AF impulse response [ ]iz k  Discrete-time received signal 

I  Identity matrix [ ]i kξ  Noise at PF output 

cK  Channel coherence time [ ]i kη  Noise at AF output 

M  
Number of antenna array 

elements 
Z  Signal vector 

N  
Number of samples (sample 

complexity) 
η  Vector of the random 

process at the AF output 

GDN  GD sample complexity 
modS  

Vector of the process at the 

MSG output 

EDN  ED sample complexity SNR  Signal-to-noise ratio 

MFN  MF sample complexity ( )GDT X  GD decision statistics 

[ ]s k  PU Signal 
mod[ ]is k  Model signal 
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Appendixes 

Appendix A. 

We say that any random variable x has a chi-square distribution with υ  degree of freedom if its  

probability density function (pdf) is presented as  
0.5 1( ) exp( 0.5 )  ,p x cx xυ−= −  (A1)

where c is a constant given by [42] 

0.5

1
 ,

2 (0.5 )
c υ=

Γ υ  
(A2)

( )Γ ⋅ is the gamma function. The MGF form for the chi-square distributed random variable x is 

determined as 


∞

−
∞

∞−

−===
0

15.0  )5.0exp()exp()()exp()exp()( ][ dxxxlxcdxxplxlxElx
υM  (A3)

At 1υ = , the constant c can be presented in the following form: 

0.5

1 1
 

2 (0.5 ) 2
c = =

Γ υ π  
(A4)

Assume that 1

2
][ [ ]i iz k k= ξ  and 2

2 [ ] [ ]i iz k k= η . The pdfs for the random variables 1iz  and 2iz  are 

defined by the chi-square 2χ  distribution law with one degree of freedom [18]: 

1
1 12

1

1
( ) exp   ,   0  ,

22   
i

i i

i

z
p z z

z

 = − > σπ σ    
(A5)

2
2 22

2

1
( ) exp    ,   0  .

22   
i

i i

i

z
p z z

z

 = − > σπ σ    
(A6)

Define a new random variable 1 2i i iz z z= − . The MGF of the random variable iz  is given using the 

following formula: 

1 2 1 2( ) [ exp( )] {exp[ ( )]} [exp( )exp( )]
iz i i i iil E lz E l z z E lz lz= = − = −M

 

1 21 2[[ exp( )] exp( )] ( ) ( ) 
i i ii z zE lz E lz l l= − = −M M

 (A7)

The MGF of the random variable 1iz  can be defined as 


∞∞













 −−=







−=

0
112

10
12

1

1

1 . 
2

1
exp

1

 2

1

2
exp

)exp(

 2

1
)(

1 iii
ii

z dzzl
z

dz
z

z

lz
l

ii
i σσπσσπ

M  (A8)

Introducing the variable 1
122

i
i i

z
g lz= −

σ
, we can write: 

1

2 2

2 2 2
0 0

2 1 2 1 1 1
( ) exp( )

2 1 2 (1 2 )2

i

i

g

z i i i

i i

l e
l g dg dg

l lg g

∞ ∞ −σ − σ= × − =
σ − σ π − σπσ  M

 
(A9)
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Based on definition of the gamma function [42] 

1

0

( ) exp( )   ,xx l l dl
∞

−Γ = −
 

(A10)

we obtain that 

0

(0.5)
ig

i

i

e
dg

g

∞ −

= Γ = π
 

(A11)

The final MGF of the random variable 1iz  is defined as 

1 2

1
( )

 1 2
iz l

l
=

− σ
M

 
(A12)

The mean and the variance of the random variables 1iz  can be determined in the following form: 

1 2
1

0

( )
[ ]  iz

i

l

l
E z

l
=

∂
= = σ

∂
M

 
(A13)

1

2
2 2 2 4 4 4

1 1 1 12

0

( )
[ ] [ ] [ ] [ ] 3 2  .iz

i i i i

l

l
Var z E z E z E z

l
=

∂
= − = − = σ − σ = σ

∂
M

 (A14)

By the analogous way, we can find that the MGF of the random variable 2iz  takes the  

following form: 

2 2

1
( )

 1 2
iz l

l
− =

+ σ
M

 
(A15)

Since 1{ [ ]}M

i is k =  are spatially correlated for i-th antenna array elements and according to [43,44], the 

MGF of 2

1
[ ]

M

ii
s k

=  is defined as 

2
1

2 1

[ ]
1

( ) (1 )M
i i

M

s h ik
i

s
l E l

=

−


=

= − σ α∏M
 

(A16)

where iα  is the eigenvalue of the i-th spatial channel of the correlation matrix C given by Equation (2). 

Based on Equations (A12), (A15), and (A16) the MGF of the GD partial decision statistics ( )GR kT X  is 

determined in the following form: 

∏∏∏∏
==== −

×
+−

=−
−

=
M

i ihs

M

i
z

M

i
z

M

i ihs
T

lEll
ll

lE
l

iikGD
1

222
111

2)(
1

1

)21)(21(

1
)()(

1

1
)(

21 ασσσασ
MMM X

 

24
1

1 1

1(1 4 )

M

M
i s h iE ll =

=
− σ α− σ

∏
 

(A17)

Appendix B. 

Using the following representation for the Q-function [45] 

( ) 0.5erfc( / 2)Q x x= (B1)
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and taking into consideration (50), and (51), (54) can be written in the following form: 
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1
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222221

2

222

2221

2
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ηξ

ηξ

σσ

βρσβσρ
σμ

σσσ

ρσσρ
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THR

SNRNM

ENMTHR

THR

NM

THR

SNRNM

ENMTHR

THR

w

GD

w

hsGD

THR

op
GD

w

w

GD

w

hsGD

THR

op
GD

GD

GD

 (B2)

where 

22
erfc( )  t

x

x e dt
∞

−=
π   

(B3)

is the complementary error function. 
We can notice form Equation (B2) that the probability of error ( ) GD

er GDP THR  as a function of 

GDTHR  is twice differentiable for this threshold and based on discussion in [46] we can conclude that  
2

2

( )

( )

GD
er GD

GD

P THR

THR

∂
∂

 0> . Thus, the probability of error ( ) GD
er GDP THR  is a convex function and has a global 

minimum if the following equality is satisfied op
GD GDTHR THR= . To be more accurate, the probability of 

error ( ) GD
er GDP THR  is a quasi-convex function since it can have flat regions as we will see later.  

This implies that we have only one value of the threshold GDTHR  minimizing the probability of error 
GD

erP . This value is the optimal threshold op
GDTHR . We can determine the optimal threshold op

GDTHR  

solving the following equation with respect to GDTHR  using the procedure discussed in [35]: 

1
[ ( )] 0 .

( )
GD

er GD
GD

P THR
THR

∂ =
∂  

(B4)

Taking into consideration the following equation [45] 

2

2

2 ( )
erfc exp   ,

x a x a

x b bb

 ∂ − −  = − −   ∂ π     
(B5)

where the values a and b are the arbitrary constants, we can represent Equation (B4) using the  

following form: 
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 (B6)

At the condition 1SNR <<  we can use the following approximations 2( ) 4 4SNR + ≈  and 

)1(2)1(2 222 ββ +≈++SNR . Solving Equation (B6) with respect to the threshold GDTHR , the optimal 

GD threshold can be expressed as 

2
2 2 2

2

2 2
2 2

2

4
   ;                    ;

1

4 (1 )
   ;        .

2(1 )

op w
GD

op w
GD

NM
THR

NM
THR

ξ η−

ξ η−

 σ= σ = σ = σ + ρ


σ + β = σ ≠ σ + ρ  

(B7)
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