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Abstract: An adaptive detection threshold under employment of the generalised detector (GD) in radar sensor systems is defined.
GD is constructed in accordance with the generalised approach to signal processing in noise. To define the GD adaptive threshold
based on the observed noise samples, the authors apply an appropriate noise power estimation technique. This study deals with an
adaptive GD detection threshold definition as a function of the estimated noise power. Under investigations, they use two noise
power estimation procedures. The first is the sliding window technique with the reference cells. The second procedure is based on
the adaptive noise power estimation. Comparative analysis of simulation results demonstrates superiority by detection
performance in favour of GD implementation in comparison with the well-known constant false alarm rate (CFAR) detectors,
namely, cell averaging CFAR and ordered statistics CFAR detectors.
1 Introduction

Noise power estimation techniques are widely used in
wireless communications, cognitive radio, speech
recognition, radar sensors, remote sensing systems and so
on. In some wireless communication systems, for example,
in worldwide interoperability for microwave access
(WiMAX) networks (IEEE 802.16), the noise power
estimation procedure is applied to estimate the
signal-to-noise ratio (SNR) at the receiver input that is very
important parameter for the channel quality control and
evaluation of link reliability [1]. As discussed in [2, 3], the
proposed noise power estimator in the case of orthogonal
frequency-division multiplexing (OFDM) system operates at
the receiver front-end based on OFDM principle. The
estimator uses the feature of time synchronisation preamble
in WiMAX systems [IEEE802.16, 2004]. In OFDM
systems, SNR estimation is also used for power control,
adaptive coding and modulation, turbo coding etc.
Complete knowledge about the noise power at the energy
detector input is required, that is, it should be estimated, in
the case of energy detector implementation for fast
spectrum sensing in cognitive radio systems [4].
The noise power estimation is widely used in radar sensor

systems employing the constant false alarm rate (CFAR)
detector. In the case of CFAR detector, the noise power is
estimated after processing the specified number of reference
cells using the sliding window technique. The required
detection threshold is defined multiplying the estimated
noise power by a scaling factor [5]. The CFAR detectors
are differed in processing method of the data in the
reference cells. Cell averaging CFAR (CA-CFAR) detector
has an optimum performance under the homogenous noise
conditions [6]. It estimates the noise power by averaging
the data in reference cells of the sliding window. The
CA-CFAR detector is the optimum CFAR detector that
maximises the probability of detection under the
homogeneous noise conditions when the reference cells
contain independent and identically distributed (i.i.d.)
observations (the CA-CFAR detector uses the maximum
likelihood estimate of noise power). The CFAR detector
with ordered statistics (OSs-CFAR) is implemented under
the non-homogeneous noise and multitarget conditions [7].
The OS-CFAR detector ranks the reference cell data in
ascending numerical order with the purpose to form a new
sequence where the kth-order statistic is selected as the
noise power. Many other CFAR detectors are employed
under the non-homogeneous noise conditions, for example,
the generalised censored mean level (GCML) detector and
the adaptive censored greatest-of CFAR (ACGO-CFAR)
detector discussed in [8, 9], respectively. The GCML
detector discards the data associated with interfering targets
before definition of the noise power and detection threshold.
Similarly, ACGO-CFAR detector suppresses the clutter
edge false alarm determining the average noise power in the
leading and lagging windows individually after censoring,
and then assigns the maximal averaged noise power as the
required estimation.
In [10], a modified OS-CFAR processor called the trimmed

mean CFAR (TM-CFAR) detector, which performs a
trimmed averaging after ordering, is considered. This paper
shows that the TM-CFAR detector may actually perform
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somewhat better than the OS-CFAR detector. The TM-CFAR
detector combines ordering with arithmetic averaging and is
reduced to the CA-CFAR and OS-CFAR schemes at the
specific trimming values. Analysis of the generalised order
statistic CFAR (GOS-CFAR) detector performance for the
correlated Rayleigh target model can be found in [11]. By
choice of the GOS-CFAR filter coefficients, the GOS-CFAR
can be the OS-CFAR, the TM-CFAR, the censored mean
level (CML) or the CA-CFAR detector. For Swerling 2
target model (as in the case of our paper) and under
homogeneous noise condition, the CA-CFAR and TM-
CFAR detectors have very close detection performance [12].
The adaptive subspace detector (ASD) [13] is a result of

adaptation process of the matched subspace detector (MSD)
to the unknown noise covariance matrix using the theory of
generalised likelihood ratio test (GLRT). The noise power
is estimated in order to have a CFAR. The ASD is the
adaptive GLRT generalisation of the MSD where the
training data are used to estimate the unknown noise
covariance matrix and scaled by the same way as the test
data. The CFAR ASD is the adaptive GLRT generalisation
of the CFAR MSD, but the training data and test data are
not uniformly scaled. In the ASD, it is assumed that the
training data represent the noise structure accurately, but not
the noise level. The CFAR ASD suffers the performance
loss under idealised scenario of homogeneity between the
training data and test data noise statistics [13].
The generalised detector (GD) is constructed in accordance

with the generalised approach to signal processing in noise
[14–16]. The GD consists of two channels, namely, the
Neyman–Pearson receiver channel and the energy detector
channel. The test statistic at the GD output is a result of
joint simultaneous operation of the GD Neyman–Pearson
receiver and GD energy detector channels [15, Chapter 3].
There are two linear systems at the GD input, namely, the
preliminary filter (PF), and the additional filter (AF) as
shown in Fig. 1. The PF bandwidth is matched with the
bandwidth of the signal to be detected. The PF resonant or
central frequency is detuned relatively to the AF resonant or
central frequency. This detuning provides the uncorrelated
and independent statistics at the PF and AF outputs [17,
18]. Thus, we obtain the signal plus noise at the PF output
in the case of a ‘yes’ signal, and only noise in the case of a
‘no’ signal, whereas only the noise is obtained at the AF
output for both cases, a ‘yes’ or a ‘no’ signal. Thus, GD is
designed to formulate a decision-making rule (test statistic)
for the signal detection rather than a filtering approach
Fig. 1 Principal flowchart of GD
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which nulls or cancels the interference (signal blocking
operation) [15, Chapter 3]. The GD employment in
communication systems is discussed in [19–22] and in radar
in [23], in particular, in radar sensor systems for short and
middle range radar applications such as the closing vehicle
detection and blind spot detection in [24–27].
Objective of the present paper is a definition of the GD

adaptive detection threshold under employment of
appropriate noise power estimation technique. The reference
noise at the AF output helps us to perform easily any noise
power estimation approach. Thus, we propose to add the
noise power estimator module to the main GD structure
presented in [14] and [15, Chapter 7, Fig. 7.1]. The GD
threshold is defined using the main GD functioning
principles [14] and [15, Chapter 3]. To define the
instantaneous GD detection threshold, we apply two
suitable noise power estimation methods. The first method
is the sliding window technique with suitable number of
reference cells. The second method is based on the adaptive
noise power estimation (ANPE) technique discussed in
[28]. We present a comparative analysis between the GD
and well investigated types of CFAR detectors, namely,
CA-CFAR and OS-CFAR detectors, with the purpose to
show GD superiority by detection performance under the
homogeneous and non-homogeneous noise conditions in
comparison with the CFAR detectors. Discussion of
simulation results allows us to make a conclusion that GD
demonstrates the better detection performance and
robustness against the interfering targets in comparison with
the CA-CFAR and OS-CFAR detectors under the same
initial conditions.
The rest of this paper is organised as follows. The main GD

functioning principles are discussed briefly in Section
2. Section 3 deals with a brief description of the noise
power estimation procedures applied to GD. Simulation
results are discussed in Section 4. Finally, the conclusion
remarks are presented in Section 5.
2 GD: main functioning principles

2.1 General statement

Let Y[n] be the sample of the input discrete-time stochastic
process; a[n] is the sample of the discrete-time target return
signal; w[n] is the sample of the discrete-time additive
Gaussian noise with zero mean and variance σ2; n = 0, …,
N−1. The simplest signal detection problem can be
presented in the following form

Y [n] = a[n]+ w[n], n = 0, . . . , N − 1 ⇒ H1
w[n], n = 0, . . . , N − 1 ⇒ H0

{
(1)

where N is the sample size, H1 is the hypothesis a ‘yes’ signal
and H0 is the alternative hypothesis. If the probability of false
alarm PFA is fixed, there is a problem to define a criterion, for
which the probability of detection PD is maximum for any
SNR. In practice, in order to maintain permanently a
physical sense of signal detection, the target return signal
a[n] should be replaced by its model am[n] at the receiver.
This model signal, in a general case, is given as am[n] =
μa[n], where μ is the coefficient of the proportionality, and
in particular, in the case of GD, is defined as

am[n] = a[n] (2)
IET Signal Process., pp. 1–11
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The Equality (2) is the main functioning condition for GD
[14], [15, Chapter 3] that is very important for better
understanding of GD operation.
The use of GASP in noise assumes some modifications

concerning the initial premises of the classical and modern
signal detection theories. The signal detection algorithm
constructed based on GASP in noise can be presented in
the following form [14], [15, Chapter 3] and [16, Chapter 5]

∑N−1

n=0
2X [n]am[n]−

∑N−1

n=0
X 2[n]+ ∑N−1

n=0
h2[n]

.
H1

,
H0

THRGD (3)

where X[n] is the sample of the discrete-time observed
stochastic process at the PF output, η[n] is the sample of
discrete-time observed noise at the AF output and THRGD

is the GD detection threshold. The first term in (3)
corresponds to the optimal detector in the Neyman–Pearson
criterion sense with twice the gain and is considered as the
sufficient statistics of the likelihood mean. The second term
in (3) corresponds to the energy detector and is considered
as the sufficient statistics of the likelihood variance. The
third term in (3) is the power of reference noise formed at
the AF output according to the main GD functioning
principles. Equation (3) represents the decision-making rule
for GD employment in any signal processing system.

2.2 GD structure

For better understanding (3), we recall the main GD
functioning principles discussed in detail in [14], [15,
Chapter 3] and [16, Chapter 5]. The simple GD flowchart
is represented in Fig. 1 where model signal generator
(MSG) is the local oscillator. For simplicity of analysis,
we think that PF and AF have the same amplitude-
frequency responses and bandwidths. As we mentioned
before, the resonant or central frequency of AF is detuned
relative to the PF one on such a value that the signal to
be detected cannot pass through the AF. It is well known,
if the detuning value between the AF and PF resonant
frequencies is more than 4 or 5 times Δfa, where Δfa is
the bandwidth of the signal to be detected, the processes
Fig. 2 GD structure for practical purposes
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forming at the AF and PF outputs can be considered as
the independent and uncorrelated processes. In practice,
the coefficient of correlation between the PF and AF
output processes is not more than 0.05 that was confirmed
experimentally in [17, 18].
When there is no signal at the GD input, the statistical

parameters at the AF and PF outputs are the same, since AF
and PF do not change the statistical parameters of input
process because they are the linear GD front-end systems.
By this reason, AF can be considered as a reference noise
source. A detailed discussion of AF and PF can be found in
[14], [15, Chapter 3] and [16, Chapter 5]. If the Gaussian
noise w[n] with zero mean and power spectral density
(PSD) 0.5N0 comes in at the AF and PF inputs, the noise
forming at the AF and PF outputs is Gaussian too. In a
general case, this noise takes the following form

wPF[n] = z[n] = ∑1
m=−1

hPF[m]w[n− m]

wAF[n] = h[n] = ∑1
m=−1

hAF[m]w[n− m]

⎧⎪⎪⎨
⎪⎪⎩ (4)

where hPF[m] and hAF[m] are the impulse responses of the PF
and AF, respectively. The variance of noise forming at the AF
and PF outputs is given by [20]

s2 = N0v
2
0

8DF
(5)

where in the case if AF (or PF) is the resistance-inductance-
capacitance (RLC) oscillatory circuit, the AF (or PF)
bandwidth ΔF and resonance frequency ω0 are defined in
the following manner ΔF = πβ, v0 = (R/

����
LC

√
), where β =

(R/2L).
The main functioning condition of GD (2) is the equality

over the whole range of parameters between the model
signal am[n] forming at the GD MSG output and the signal
to be detected a[n]. How we can satisfy this condition in
practice is discussed in detail in [14], [15, Chapter 7]. For
practical purposes, we may use the GD flowchart presented
in Fig. 2, in which the threshold apparatus (THRA) device
defines the GD threshold and the signal model generator
3
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switching apparatus (SGSA) is used to switch on the MSG
with the purpose to define the unknown parameters of the
target return signal. The switch K1 takes the position ‘1’ to
define the GD threshold THRGD and takes the position ‘2’
after definition of the GD threshold to carry out a detection
of the signal and define its parameters. The switch K2
works to put the THRA in and out of service.
In the case of the signal presence (the hypothesis H1), when

X[n] = a[n] + ζ[n], where ζ[n] is the sample of the
discrete-time observed noise at the PF output, the left side
in (3), under the condition given by (2), takes the form

∑N−1

n=0

a2[n]+
∑N−1

n=0

h2[n]−
∑N−1

n=0

z2[n]

where

∑N−1

n=0

a2[n] = Ea

is the signal energy, and

∑N−1

n=0

h2[n]−
∑N−1

n=0

z2[n]

is the background noise at the GD output. The background
noise is a difference between powers of the noise forming
at the PF and AF outputs. In the opposite case, if the target
return signal is absent (the hypothesis H0), when X[n] =
ζ[n], the left side in (3), under the condition given by (2), is
the background noise

∑N−1

n=0

h2[n]−
∑N−1

n=0

z2[n]

only that tends to approach zero in the statistical sense.
Fig. 3 Signals at the PF and AF outputs

a AF response and noise
b PF response and noise
c PF response and target return signal
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Thus, the signal to be detected a[n] plus noise ζ[n] can be
appeared at the PF output and only the reference noise η[n] is
appeared at the AF output. This statement is illustrated by
Fig. 3 where we have only the noise at the AF output
regardless of a ‘no’ or a ‘yes’ signal at the GD input
(Fig. 3a), and the noise only or signal plus noise at the PF
output, Figs. 3b and c, respectively. Fig. 3 also shows that
PF and AF have the same bandwidth, but the AF central
frequency is detuned relative to the PF central frequency.
2.3 GD threshold

The Neyman–Pearson criterion is motivated with the purpose
to obtain the best detection performance ensuring that the PFA

does not exceed some tolerable value α (PFA≤ α). This
optimisation problem is solved by the method of Lagrange
multipliers, [5, Chapter 6] and [29]. Given a specific model
of the probability density function (pdf) at the GD output
under hypotheses H0 and H1, the probability of false alarm
PFA and the probability of detection PD can be defined in
the following forms

PFA =
∫1
THRGD

p(x; H0) dx =
∫1
THRGD

p
Z
H0
GD
(x) dx (6)

PD =
∫1
THRGD

p(x; H1) dx =
∫1
THRGD

p
Z
H1
GD
(x) dx, (7)

where p
Z
H0
GD
(x) is the background noise pdf at the GD output

and p
Z
H1
GD
(x) is the pdf of decision statistics forming at the

GD output under the hypotheses H1. In the case when the
noise is the narrow-band process with the Rayleigh
amplitude envelope and the phase uniformly distributed
within the limits of the interval [0, 2π], the pdf p

Z
H0
GD
(z) at

the GD output (the background noise pdf) can be
determined in the following form [15, Chapter 3]

p
Z
H0
GD
(z) =

1

2s2
exp − z| |

2s2

( )
, z ≥ 0

0, z , 0

⎧⎨
⎩ (8)

As we can see from (8), the background noise pdf at the GD
output is defined by the exponential-type law when the
observation time interval [0, T ] is infinitesimal (T→ 0).
Based on (8), the probability of false alarm PFA can be
presented in the following form

PGD
FA =

∫1
THRGD

p
Z
H0
GD
(z) dz = exp − THRGD

2s2

( )
(9)

According to (9), the GD threshold in terms of PGD
FA can be

presented by the following equation

THRGD = −2s2 ln(PGD
FA ) (10)

If the scaling factor gGD = −2 ln(PGD
FA ) is used, the modified

GD threshold is given by

THRGD = s2gGD (11)

Based on the scaling factor, the probability of false alarm PGD
FA
IET Signal Process., pp. 1–11
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can be presented in the following form

PGD
FA = exp −0.5gGD

( )
(12)

The last equation allows us to determine the probability of
false alarm PGD

FA for a given scaling factor γGD or, more
likely, to determine the required scaling factor γGD for the
desired probability of false alarm PGD

FA .

2.4 GD probability of detection

Based on (8), the pdf of the decision statistics at the GD
output under the hypothesis H1 can be presented in the
following form

p
Z
H1
GD
(z) = 1

2(s2
s + s2)

exp − z

2(s2
s + s2)

( )
(13)

where s2
s is the variance of the fluctuating target return signal

modelled as Swerling 2 model. The probability of detection
PGD
D can be determined as

PGD
D =

∫1
THRGD

p
Z
H1
g
(z) dz

=
∫1
THRGD

1

2(s2
s + s2)

exp − z

2(s2
s + s2)

( )
dz

=
∫1
THRGD

1

2s2(1+ SNR)
exp − z

2s2(1+ SNR)

( )
dz

(14)

where SNR = s2
s/s

2 is the SNR at the GD input. Taking into
consideration (10) and based on (14) we can define the
probability of detection PGD

D in the following form

PGD
D = exp − THRGD

2s2(1+ SNR)

( )
= exp

ln (PGD
FA )

1+ SNR

( )
(15)

3 Noise power estimation

If the noise variance σ2 at the AF and PF outputs is assumed
to be constant, then the fixed GD threshold can satisfy (10).
However, owing to non-stationary scenario in practice, this
condition is not satisfied. Thus, in order to maintain the
constant probability of false alarm PFA required to achieve
the acceptable performance stability, the GD threshold
should be adaptively updated or changed based on the noise
variance at the AF and PF outputs (the noise power at PF
and AF outputs is the same). Thus, there is a need to apply
some noise power estimation technique in order to define
the adaptive GD threshold. Owing to the fact that the
expected return signals from interfering targets are located
within the limits of PF bandwidth, the noise power
estimation is not affected by these interfering signals. In the
case, when the interference is included into the AF
bandwidth from jammer or any other sources, the noise
power estimation procedure will be affected.
Two different noise power estimation procedures are

considered with the purpose to be used by GD. The first
procedure is the sliding window technique used to estimate
the noise power by processing a group of reference cells
and the second one is called the ANPE.
IET Signal Process., pp. 1–11
doi: 10.1049/iet-spr.2013.0235
3.1 Noise power estimation based on sliding
window technique

The noise power estimation approach based on sliding
window technique is simple and effective. The noise power
estimator contains N reference cells. The available data (the
squared noise samples at the GD AF output) in the
reference cells are processed by a special algorithm to
define the estimated noise power. By this approach, the
estimated noise power is obtained by processing the
reference cells (the cell averaging technique) [5, 6]. This
technique is widely adopted by the CA-CFAR detectors [5,
Chapter 7], [30–33] (Fig. 4). There is a need to mention
that this technique works under assumption that noise
samples in the reference cells of the sliding window are
i.i.d. For this technique, the estimated noise power can
be obtained by processing the squared noise sample η[n],
n = 0, …, N−1 forming at the AF output in the following
form

ŝ2 = 1

N

∑N−1

n=0

h2[n] (16)

Taking into consideration (16), the GD detection threshold
can be easily defined as

THRGD = −2ŝ2 ln(PFA) (17)

The number of the reference cells N in the sliding window
determines the noise power estimation accuracy. Small
value of N leads to the poor detection performance and
high noise power estimation error. As the number of
reference cells N becomes large (N→∞), the noise power
estimation should be converged to the true value [5,
Chapter 7]. In practice, N is chosen based on tradeoff
between the CFAR losses, complexity and required
accuracy [34].
The definition of the average probability of detection PGD

Dav
helps us to find a relationship between the GD detection
performance and the number of reference cells in the
sliding window N. According to [5, Chapter 7], the average
probability of detection PGD

Dav
is defined using the following

form

PGD
Dav

=
∫1
−1

PGD
D p(THRGD) d(THRGD) (18)

where p(THRGD) is the GD threshold pdf that can be
determined in the following form based on the procedure
5
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discussed in [5, Chapter 6]

p(THRGD) =
N

gGDs
2

( )NTHRN−1
GD

(N − 1)!
exp −N

THRGD

gGDs
2

( )
(19)

Based on (18) and (19), the average probability of detection
PGD
Dav

is determined as (see (20))
Using the tabulated integral [35]

∫1
0
xb exp −ax( ) = b!

ab+1
, a . 0,

b = 0, 1, 2, . . .

(21)

we can find that the average probability of detection PGD
Dav

is
determined in the following form

PGD
Dav

= 1+ gGD
2N (1+ SNR)

( )−N

(22)

In general, the detector will be considered to be CFAR if the
expected or averaged value of the probability of false alarm
does not depend on the actual value of noise power. In the
case of GD, the expected value of PGD

FA is defined as (see (23))
Taking into consideration (21), solution of (23) has the

following form

PGD
FAav

= 1+ gGD
2N

( )−N
(24)

From (24), we can note that the expected average probability
of false alarm PGD

FAav
of the GD does not depend on the actual

noise power σ2. Thus, the GD exhibits the CFAR behaviour.
Actually, the observed probability of false alarm PGD

FAob
will

vary from the desired value. The degree of this variation
can be defined numerically. Let PGD

FAdes
be the desired

probability of false alarm of the GD when the estimated
noise power is equal to s

_2
. The GD threshold in this case is

given as TH
_

RGD = −2s
_2

ln (PGD
FAdes

). Taking into
consideration (9), we can determine the observed
probability of false alarm of the GD PGD

FAob
using the

following form

PGD
FAob

= exp
2s
_2

ln (PGD
FAdes

)

2s2

⎧⎨
⎩

⎫⎬
⎭

= exp ln PGD
FAdes

[ ](s_2
/s2)

{ }{ }
= PGD

FAdes

[ ](s_2
/s2)

(25)

We can conclude that if the real and estimated noise powers
are the same, then the desired and observed probabilities of
false alarm are the same too.
PGD
Dav

=
∫1
−1

N

gGDs
2

( )NTHRN−1
GD

(N − 1)!
exp − TH

2g

(

PGD
FAav

=
∫+1

−1
exp − THRGD

2s2

( )
p(THRGD) d(THRGD) =

∫+1

−1 g

(
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To quantify the CFAR loss in the GD case, we should
combine (22) and (24) to eliminate the scaling factor γGD
and then solve this combination with respect to SNR. We
obtain the SNR needed to achieve the specified average
probability of detection PGD

Dav
and average probability of

false alarm PGD
FAav

when the finite number of reference cells
N is used

SNRN =
PGD
Dav

/PGD
FAav

[ ]1/N
−1

1− (PGD
Dav

)1/N
(26)

Now, taking the logarithm of the average probability of false
alarm PGD

FAav
given by (24), and applying the Taylor series

expansion we obtain

ln (PGD
FAav

) = ln 1+ gGD
2N

( )−N
{ }

= −N ln 1+ gGD
2N

( )

= −N
gGD
2N

− 1

2

gGD
2N

( )2
+ · · ·

[ ]
(27)

As the number of reference cells tends to approach infinity
(N→∞), we can define the limit of (27)

lim
N�1 ln (PGD

FAav
) = −N

gGD
2N

( )
⇒ lim

N�1PGD
FAav

= exp − gGD
2

( )
(28)

Applying the same procedure, we can define the limit of the
average probability of detection PGD

Dav
at N→∞ as

lim
N�1PGD

Dav
= exp − gGD

2(1+ SNR)

( )
(29)

Based on (28) and (29), we can determine the SNR required
to achieve the desired probability of detection PGD

Ddes
and

probability of false alarm PGD
FAdes

at N→∞ using the
following form

SNR1 = ln (PGD
FAav

/PGD
Dav

)

ln (PGD
Dav

)
(30)

The CFAR loss in the GD case can be represented using the
following form

LGDCFAR = SNRN

SNR1

= ln (PGD
Dav

)

ln (PGD
FAav

/PGD
Dav

)
× (PGD

Dav
/PGD

FAav
)1/N − 1

1− (PGD
Dav

)1/N
(31)
RGD

GDs
2

2N 1+ SNR( ) + gGD
1+ SNR

)
d(THRGD) (20)

N

GDs
2

)NTHRN−1
GD

(N − 1)!
exp − THRGD(2N + gGD)

2gGDs2

( )
d(THRGD)

(23)

IET Signal Process., pp. 1–11
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3.2 Adaptive noise power estimation

The ANPE technique is used usually under explicit detection
of time segments that contain only the noise. Thus, it is
suitable to be applied for the GD because the reference noise
sample η[n], n = 0, …, N− 1 is formed at the AF output
independently of the noise sample ζ[n], n = 0, …, N−1
forming at the PF output. Using ANPE technique [28], the
noise amplitude envelope is defined based on assumption
that it is varied slowly with respect to frequency and
subjected to the Rayleigh pdf. Under this condition, the
noise power estimator defines the noise amplitude peaks
and classifies them independently in the frequency domain.
The overshoots of observed noise amplitude peaks are
excluded and the average noise power is estimated based on
the remaining noise amplitude peaks.
In the additive white Gaussian noise (AWGN) case, the

noise PSD is constant over the whole frequency band. After
AWGN filtering by the AF, the noise PSD will be not
stationary. Thus, the filtered noise at the AF output may be
called as the coloured noise. The coloured noise average
power can be estimated by averaging the observed noise
amplitude peaks. We assume that the noise at the AF output
is coloured within the limits of the AF bandwidth and
obeys the Rayleigh distribution. The Rayleigh random
variable x is subjected to the following pdf [36, Chapter 2]

p(x) = x

s2
n
exp − x2

2s2

( )
, 0 ≤ x ≤ 1 (32)

The cumulative distribution function of the Rayleigh random
variable x is given by [34, Chapter 2]

F(x) = 1− exp − x2

2s2

( )
(33)

The jth order percentile is a comparison score below that a
certain per cent of observations fall or may be found. This
score can be presented in the following form [28]

xj = F−1(j) = b
��������������
−2 lg(1− j)

√
, 0 , j , 1 (34)

where β corresponds to the mode of the Rayleigh distribution.
The variance of the Rayleigh distributed random variable x is
determined in the following form [28]

Var(x) = s2 = 4− p

2
b (35)

Based on this noise power estimation technique, the noise
samples forming at the AF output are analysed in the
frequency domain and the discrete Fourier transform is
applied. In this case, for each frequency bin k, the AF
output noise distribution in the frequency domain can be
presented as the Rayleigh pdf with the mode β(k) used to
define a reference noise amplitude envelope Lσ. The desired
noise amplitude envelope Ln can be estimated by simple
way using (34) and we obtain the following result

Ln = Ls
��������������
−2 lg (1− j)

√
(36)

The mean of the Rayleigh random variable x is given by

E[x] = b(k)
�����
p/2

√
(37)
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As follows from (28), the frequency dependent mode β(k) can
be presented in the following form

b(k) = E[x]�����
p/2

√ (38)

The frequency dependent mode β(k) can be obtained if the
mean of the noise components, which is also frequency
dependent, is estimated. More details about ANPE
technique can be found in [28].

4 Simulation results

The simulation results for ANPE technique are presented in
Fig. 5, when the sampling frequency is 10 kHz and j = 0.8
that means only 20% of the noise can be misclassified
according to Rayleigh distribution. Owing to choice of PF
and AF impulse responses and relation between their central
or resonant frequencies, there are no interfering signals at
the AF output, and, as it was proven by simulation that is
not included in the paper, the variations in the sampling
frequency and noise percentile j of the Rayleigh distribution
are not important for the noise power estimation and, as a
consequence, for definition of the GD threshold.
For the CA-CFAR detector, we can define the probability

of detection PCA−CFAR
D using the pdf of data samples in the

reference cells. The pdf of data samples is given by

px(x) =
1

s2
exp − x

s2

( )
, x ≥ 0 (39)

By the same way, the probability of detection PCA-CFAR
D is

obtained as

PCA-CFAR
D =

∫1
THRCA

1

s2
s + s2

exp − x

s2
s + s2

( )
dx

=
∫1
THRCA

1

s2(1+ SNR)
exp − x

s2(1+ SNR)

( )
dx

= exp − THRCA-CFAR
s2(1+ SNR)

( )
= exp − gCA-CFAR

1+ SNR

( )
(40)
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Fig. 7 Effect of the number of reference cells N on the CA-CFAR
and GD detection performance: the same noise power estimation
procedure is used for both detectors
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where THRCA-CFAR = σ2γCA-CFAR is the CA-CFAR detector
threshold, and γCA-CFAR is the scaling factor given by

gCA-CFAR = N [(PCA-CFAR
FA )−1/N − 1] (41)

The definition of the average probability of detection
PCA-CFAR
Dav

of the CA-CFAR detector can be derived by
analogous way as in the case of GD [6]

PCA-CFAR
Dav

= 1+ gCA-CFAR
N (1+ SNR)

( )−N

(42)

The simulated probability of detection PD is defined as the ratio
between the number L of overshoots with respect to the
detection threshold to the total number of observations M [37]

PD = L

M
(43)

We compare the GD, CA-CFAR detector and OS-CFAR
detector by detection performance under the same initial
conditions: the probability of false alarm PFA is equal to
10−3 and 10−4; the number of reference cells used for noise
power estimation by these detectors is also the same, N = 20;
and the number of observations is M = 1000. The radar
sensor target and the interfering target fluctuation models are
described by the Swerling 2 model. We define the interfering
targets in the following form. When there is one target in the
test cell, and one or more targets located among the reference
cells in the sliding window assuming that the power of those
targets exceeds the power of the noise samples in the
surrounding reference cells, the presence of those targets will
raise the estimate noise power value and, as a consequence,
the detection threshold. We called these targets the
interfering targets [5, Chapter 7].
The theoretical probability of detection PD and the average

probability of detection for both detectors PCA−CFAR
Dav

and PGD
Dav

as a function of SNR are presented in Fig. 6 based on (15),
(22), (31) and (32) assuming that the GD noise power
estimation is based on the sliding window technique
(Section 3.1) and the probability of false alarm PFA is equal
to 10−3 and 10−4 with the number of reference cells N = 20.
The GD demonstrates the better detection performance in
comparison with the CA-CFAR detector. For example, at
Fig. 6 Comparison between the theoretical CA-CFAR and GD
detection performances
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the probability of false alarm PFA equal to 10−4 when the
probability of detection PD is equal to 0.6, the SNR gain in
favour of GD is approximately 1.7 dB.
Detection performances of GD and CA-CFAR detector as a

function of SNR are illustrated in Fig. 7 at N = 10, 20, 30. As
we can see from Fig. 7, the number of reference cells N has a
great impact on the CA-CFAR detector performance in
comparison with the GD one. As was shown in [5, Chapter
7], the condition N < 10 is not acceptable in practice owing
to high CFAR detection losses.
The receiver operating characteristic (ROC) curves of GD

and CA-CFAR detector are presented in Fig. 8 at SNR = 10
and 15 dB. At the same probability of false alarm PFA, the
GD demonstrates the better probability of detection PD in
comparison with the CA-CFAR detector. For example, at
SNR = 15 dB and for PFA = 10−5, the probability of
detection PD in the case of CA-CFAR is 0.62, whereas in
the case of GD, the probability of detection PD is equal to
0.72.
In the case of GD, the observed or simulated probability of

false alarm PGD
FAob

is determined by calculation of the number
L in (43) when the target return signal power is equal to zero.
Table 1 compares the desired probability of false alarm PGD

FAdes
Fig. 8 ROC of GD and CA-CFAR detector
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Table 1 GD desired and observed probabilities of false alarm

PGD
FAdes

Number of false alarms PGD
FAdes

×M

N = 20 N = 40

10−4 0 0 0.1
10−3 3 2 1
10−2.5 6 5 3.2
10−2 13 11 10
10−1.5 34 32 31.6
10−1 102 96 100
10−0.5 319 313 316.2

Fig. 10 CA-CFAR and GD detection performance

GD employs two noise power estimation procedures: the sliding window and
ANPE

www.ietdl.org
and the simulated probability of false alarm PGD
FAob

for GD at N
= 20; 40 and M = 1000.
As we can see from Table 1, there is a small difference

between the desired probability of false alarm PGD
FAdes

and the
observed or simulated probability of false alarm PGD

FAob
.

Thus, the theoretical number of false alarms is not perfectly
identical with the simulated one. By this reason, we can
believe that the GD has the asymptotic CFAR property.
The CFAR losses for CA-CFAR detector and GD are

presented in Fig. 9 as a function of the average probability
of detection PDav

at N = 20; 30 when the average probability
of false alarm PFAav

is equal to 10−3 and 10−4. As follows
from Fig. 9, the CFAR loss increases with increasing in the
average probability of detection PDav

if the average
probability of false alarm PFAav

and the number of reference
cells N are fixed. For both detectors, the CFAR loss is
increased at the low average probability of false alarm PFAav
and decreased with increasing in the number of reference
cells N. The GD CFAR loss is less in comparison with
CA-CFAR detector one. For example, when the average
probability of detection PDav

is equal to 0.6 and the average
probability of false alarm PFAav

is equal to 10−3 at N = 30,
the CFAR loss is equal to 1.5 dB in the case of CA-CFAR
detector, whereas the CFAR loss is 1 dB in the case of GD.
Fig. 10 demonstrates the simulation results of the detection

performances for the CA-CFAR detector and GD when the
two suggested noise power estimation procedures are
applied to GD, namely, the sliding window technique
(Section 3.1) at N = 20 and ANPE technique (Section 3.2)
at j = 0.8 and the sampling frequency is equal to 10 kHz
Fig. 9 Comparison of CFAR losses between the GD and CA-CFAR
detector

IET Signal Process., pp. 1–11
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when the probability of false alarm PFA is 10−3 and 10−4.
The GD SNR gain is 2 dB employing the sliding window
technique and 2.5 dB using the ANPE procedure,
respectively, in comparison with the CA-CFAR detector at
the probability of detection PD equal to 0.6 and the
probability of false alarm PFA equal to 10−4. As we can
see from Fig. 10, at SNR≤ 7 dB, the GD demonstrates
almost the same detection performance for both noise
power estimation procedures. If SNR > 7 dB, the ANPE
technique leads us to the better detection performance
in comparison with the sliding window one. Thus, in the
case of high SNR, the ANPE technique is preferable, but
the sliding window technique is simple under
implementation in practice and preferable for the multitarget
detection scenario.
Fig. 11 presents a comparison between the detection

performances of the CA-CFAR detector, OS-CFAR detector
and GD using the sliding window technique at N = 20 and
PFA = 10−4 for all detectors under the three cases: no
interference, one interfering target and two interfering
targets. We assume that the interfering target signal power
Fig. 11 Comparison of the CA-CFAR detector, OS-CFAR detector
and GD detection performance for three cases: no interference, one
interfering target and two interfering targets
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is equal to the target return signal power that means,
consequently, that the interference-to-noise ratio is equal to
SNR. In the case of GD, the frequency content of
interfering signals is within the limits of PF bandwidth.
Obtained results demonstrate a superiority of GD over the
CA-CFAR and OS-CFAR detectors under all the
considered cases. For example, in the case of one
interfering target when the probability of detection PD is
0.6, the SNR gain in favour of GD is approximately 6.3 dB
comparing with the CA-CFAR detector and 2 dB in
comparison with the OS-CFAR detector. In the case of two
interfering targets, the GD achieves the SNR gain equal to
2.8 dB in comparison with the OS-CFAR detector while the
CA-CFAR detector performance degradation is severe. The
GD presents a high robustness against the interfering
targets, because such interference does not affect on the GD
background noise power estimation and, consequently, on
the definition of the adaptive GD detection threshold since
the reference noise at the AF output is used for the noise
power estimation. The case, when the frequency content of
interfering signals is outside the limits of GD PF bandwidth
and is within the limits of GD AF bandwidth, is outside the
scope of the present paper. This case is a further research of
GD in the presence of interfering targets.
5 Conclusions

The detection threshold should be determined in accordance
with the observed noise power under the condition when
the noise power σ2 is non-stationary. The signal detection
with adaptive threshold updated or varied continuously
based on the noise variance is very essential in order to
achieve the constant probability of false alarm PFA and
improve the detection performance.
Based on the simulation results, we see that the GD

demonstrates the better detection performance at the same
initial conditions and guarantees a superiority in the
probability of detection PD in comparison with the
CA-CFAR and OS-CFAR detectors without interfering
targets (homogeneous noise condition) and with interfering
targets (non-homogeneous noise condition).
The simulation results demonstrate that using the sliding

window technique and ANPE procedure for noise power
estimation, the GD has the same detection performance if
SNR≤ 7 dB. When SNR > 7 dB, the GD employing the
ANPE procedure demonstrates the better detection
performance in comparison with the sliding window
technique.
Both GD and OS-CFAR detector present good robustness

when the interfering targets are presented with vantage to
the GD while the detection performance degradation of the
CA-CFAR detector is evident.
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